Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Осталось построить отрезок, длина которого равна OD/1 - а. Для этого отложим на одном луче угла отрезки OD и ОЕ = 1 - а, а на другом луче отрезок OK = 1 (рис. P.2.23, б). Проведем DL || EK. Отрезок OL имеет искомую длину:

Осталось рассмотреть случай а 3. Решение отличается только тем, что вместо отрезков длины 3 - а и 1 - а придется рассматривать отрезки длины а - 3 и а - 1.


Глава 3

Геометрические задачи в пространстве

3.1. На луче, перпендикулярном к MN, возьмем произвольную точку А (рис. P.3.1). Спроецируем OA на плоскость P, а полученный отрезок OB на второй из данных лучей. Треугольник АСО прямоугольный (по теореме о трех перпендикулярах).

Косинус искомого угла АОС равен ОС/OA. Используя построенным треугольники, можно выразить ОС через OA:

ОС = OB sin  = OA cos  sin .

Ответ. arccos (cos  sin ).

3.2. Спроецируем данный треугольник ABC на плоскость P (рис. P.3.2) и построим угол CED, равный x, между плоскостью треугольника и плоскостью P. Введем в рассмотрение линейный элемент CD = а.

Тогда

Так как СЕ — высота в треугольнике ABC, опущенная на гипотенузу, то (из сравнения площадей) имеем

Подставляя вычисленные раньше значения AC, BC и СЕ, получим 

откуда

Так как угол x по построению всегда острый, то он определяется однозначно.

Ответ.

3.3. Из некоторой точки В

1 на стороне угла  опустим перпендикуляр B1B на плоскость P (рис. P.3.3). Через В1 проведем плоскость, параллельную плоскости P. Она пересечет другую сторону угла  в некоторой точке А1. Через B1B и А проведем плоскость, которая будет перпендикулярна к плоскости P.

Отрезки AA1 и ВВ1 равны. Обозначим АА1 = ВВ1 = а. Теперь можно вычислить все стороны треугольника ОАВ и воспользоваться теоремой косинусов, чтобы найти угол x.

Стороны OA и OB вычислить просто:

OA = а ctg , OB = а ctg .

Сторона AB равна А1В1 в треугольнике ОА1В1. Так как

то по теореме косинусов

Воспользуемся теоремой косинусов еще раз, но уже для треугольника ОАВ:

АВ^2 = ОА^2 + ОВ^2 - 2ОА · OB cos x.

Подставляя сюда найденные выше выражения для OA, OB и AB, получим уравнение относительно cos x. Решая его, после несложных тригонометрических преобразований найдем cos x

.

Ответ.

3.4. Построим плоскость P, перпендикулярную к прямой а, и спроецируем на нее прямые b, с и d. Искомая прямая параллельна а, т. е. должна спроецироваться в точку О на плоскости P. Точка О будет одинаково удалена от проекций b1, с1 и d1 трех этих прямых.

Поскольку прямые а, b, с и d скрещивающиеся, ни одна из прямых b, с и d не может спроецироваться в точку на плоскости P, так как иначе она оказалась бы параллельной прямой а.

Проекции никаких двух прямых из b, с, d не сольются, так как это означало бы, что эти две прямые лежат в одной плоскости. Поэтому проекции b1, с1 и d1 могут расположиться на плоскости P лишь одним из четырех способов (рис. P.3.4, а).

B первом случае (проекции образуют треугольник) мы получим четыре точки, равноотстоящие от b1, с1 и d1. Это — центры вписанной и вневписанных окружностей. Проводя через каждую из них прямую, перпендикулярную к плоскости P, придем к четырем решениям.

Во втором случае (две из проекций параллельны) получим два решения (рис. P.3.4, б).

B третьем случае (проекции пересекаются в одной точке) будет единственное решение — прямая, проходящая через общую для трех проекций точку.

B последнем случае (проекции b1, с1 и d1 параллельны) решения нет.

Так как все возможные случаи исчерпаны, то задача решена.

3.5. Проведем CD параллельно AB (рис. P.3.5).

Угол SCD искомый. Построим CF  AB и AD  AB. B прямоугольнике AFCD имеем CD = АF = а/2ADCF = . Из треугольника SAD находим  Тангенс угла SCD равен SD : CD.

Ответ. 7.

3.6. Если OK =  1/2 AB = OA, то треугольники OAM и OKM (рис. P.3.6) равны. Таким образом, условие OK = OA равносильно условию AM = KM и (совершенно аналогично) условию BP = KP.

Отрезок OK входит в оба треугольника OKM и OKP:

OK^2 = OM^2 - m^2, OK^2 = OP^2 - l^2, т. е. OM^2 - m^2 = OP^2 - l^2

(через m и l обозначены длины отрезков MK и KP соответственно).

Так как OM^2 = а^2 + AO^2, а OP

^2 = b^2 + OB^2 и AO = OB, то

а^2 - m^2 = b^2 - l^2

или

m^2 - l^2 = а^2 - b^2. (1)

Точно так же приравняем выражения для отрезка AP^2, полученные из треугольников MAP и ABP:

(m + l)^2 - а^2 = b^2 + AB^2.

Вспомнив, что по условию AB^2 = 2ab, получим (m + l)^2 = а^2 + 2ab + b^2, т. е.

m + l = а + b. (2)

Разделив почленно равенство (1) на равенство (2), получим

m - l = а - b, (3)

а решая систему из уравнений (2) и (3), найдем m = а, b = l, что и требовалось доказать.

3.7. Обозначим через PQ (рис. P.3.7) прямую, по которой пересекаются грани AOD и BOC, а через RS — прямую, по которой пересекаются грани AOB и DOC. Прямые PQ и RS определяют плоскость P. Через произвольную точку M на АО проведем плоскость, параллельную плоскости P. Фигура MNKL, получившаяся в сечении, будет параллелограммом.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже