Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

B первом случае (проекции образуют треугольник) мы получим четыре точки, равноотстоящие от b1, с1 и d1. Это — центры вписанной и вневписанных окружностей. Проводя через каждую из них прямую, перпендикулярную к плоскости P, придем к четырем решениям.

Во втором случае (две из проекций параллельны) получим два решения (рис. P.3.4, б).

B третьем случае (проекции пересекаются в одной точке) будет единственное решение — прямая, проходящая через общую для трех проекций точку.

B последнем случае (проекции b1, с1 и d1 параллельны) решения нет.

Так как все возможные случаи исчерпаны, то задача решена.

3.5. Проведем CD параллельно AB (рис. P.3.5).

Угол SCD искомый. Построим CF ⊥ AB и AD ⊥ AB. B прямоугольнике AFCD имеем CD = АF = а/2ADCF = . Из треугольника SAD находим  Тангенс угла SCD равен SD : CD.

Ответ. √7.

3.6. Если OK = ½AB = OA, то треугольники OAM и OKM (рис. P.3.6) равны. Таким образом, условие OK = OA равносильно условию AM = KM и (совершенно аналогично) условию BP = KP.

Отрезок OK входит в оба треугольника OKM и

OKP:

OK² = OM² − m², OK² = OP² − l², т. е. OM² − m² = OP² − l²

(через m и l обозначены длины отрезков MK и KP соответственно).

Так как OM² = а² + AO², а OP² = b² + OB² и AO = OB, то

а² − m² = b² − l²

или

m² − l² = а² − b². (1)

Точно так же приравняем выражения для отрезка AP², полученные из треугольников MAP и ABP:

(m + l)² − а² = b² + AB².

Вспомнив, что по условию AB² = 2ab, получим (m + l)² = а² + 2ab + b², т. е.

m + l = а + b

. (2)

Разделив почленно равенство (1) на равенство (2), получим

m − l = аb, (3)

а решая систему из уравнений (2) и (3), найдем m = а, b = l, что и требовалось доказать.

3.7. Обозначим через PQ (рис. P.3.7) прямую, по которой пересекаются грани AOD и BOC, а через RS — прямую, по которой пересекаются грани AOB и DOC. Прямые PQ и RS определяют плоскость P. Через произвольную точку M на АО проведем плоскость, параллельную плоскости P. Фигура MNKL, получившаяся в сечении, будет параллелограммом.

B самом деле, MN || PQ и LK || PQ, a ML || RS и NK || RS, как прямые, получившиеся в результате пересечения двух параллельных плоскостей третьей. Следовательно, MN || LK и ML || NK, что и требовалось доказать.

3.8. Продолжим ED и CB (рис. P.3.8) до пересечения в точке F и проведем AF — ребро двугранного угла, косинус которого нужно найти.

Так как EC = 2DB (по условию), то DB — средняя линия в треугольнике EFC. Поэтому FB = BC = а. Поскольку BA = а, то треугольник FBA равнобедренный. Сумма его углов, прилежавших к

FA, равна 60°, а угол BAF равен 30°.

Мы убедились в том, что угол CAF прямой, а следовательно, линейный угол EAC измеряет искомый двугранный угол. Теперь остаются простые вычисления:

По теореме о трех перпендикулярах отрезки EA и FA взаимно перпендикулярны; поэтому площадь треугольника EAF равна ½EA · AF, где AF = а√3 . Итак, площадь треугольника AFE равна 3a²/2, и вследствие того, что FD = DE, площадь треугольника DEA в два раза меньше.

Ответ. 3a²/2, 1/√3.

3.9. Обозначим высоту SO пирамиды через H. Предположим, что вершина пирамиды спроецируется в точку O, лежащую внутри треугольника ABC, и пусть углы SDOSEO и SFO измеряют данные двугранные углы (рис. P.3.9, а).

Рассмотрим отдельно треугольник ABC (рис. P.3.9, б). Площадь его, с одной стороны, равна сумме площадей треугольников AOBBOC и COA, а с другой стороны, равна a²√3/4. Поэтому

½a(OF + OD + OE) = a²√3/4, т.е. OF + OD + OE = a√3/2.

Каждый из отрезков OFOD

и OE можно выразить через H:

OD = H ctg α, OE = H ctg β, OF = H ctg γ. Следовательно,

H = a√3/2(ctg α + ctg β + ctg γ).

Если точка О лежит вне треугольника ABC, то один из данных двугранных углов тупой (на рис. P.3.9, в угол при BC, т. е. α). Следовательно, его котангенс будет отрицательным. Это соответствует тому факту, что площадь треугольника ABC равна сумме площадей треугольников АВО и АОС за вычетом площади треугольника ВОС. Таким образом, результат останется таким же, как в случае, когда О лежит внутри треугольника ABC.

Наконец, как легко убедиться, полученная формула дает верный результат и в том случае, когда точка О лежит на стороне треугольника ABC или совпадает с его вершиной. (Соответствующие котангенсы обращаются в нуль.)

Ответ. V = a³/8(ctg α + ctg β + ctg γ).

3.10. Так как AC = BC по условию (рис. P.3.10), то прямоугольные треугольники ADC и BDC равны и, следовательно, AD = BD. Треугольник ADB — равнобедренный, его медиана DE, проведенная из вершины D, будет одновременно и высотой. Таким образом, мы доказали, что двугранный угол при ребре AB измеряется линейным углом DEC, который обозначим через x.

Высота DO треугольника EDC будет высотой пирамиды. B самом деле, ребро AB перпендикулярно к ED и EP, т. е. к плоскости EDC. Отрезок DO, следовательно, перпендикулярен не только к EC, но и к AB, т. е. перпендикулярен к плоскости ABC.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература