2.4.
Пусть треугольник ABC — искомый и О — центр вписанной в него окружности. Если на отрезке АО = R (рис. P.2.4), как на диаметре, построить окружность, то она пересечет стороны AC и AB в точках F и E, являющихся серединами AC и AB соответственно. Отсюда построение: на отрезке АО = R строим, как на диаметре, окружность. Из точки А раствором циркуля, равным b/2, делаем на окружности засечку в точке F. Продолжаем AF за точку F на расстояние b/2 и получаем точку С. Из нее проводим дугу радиусом mc.Задача имеет два решения: треугольник ABC
и треугольник AB′С, если дуга ЕЕ′ пересекает окружность, построенную на AO; одно решение, если дуга касается окружности, и не имеет решения, если общих точек у дуги и окружности нет.2.5.
Так как углы OBO1 и OCO1 (рис. P.2.5) прямые, то вершины B и С треугольника лежат на окружности, построенной на отрезке ОО1, как на диаметре. Центр этой окружности обозначим буквой Q.Угол BQC
— центральный в той окружности, в которую угол BOC вписан (см. рисунок). Дуга, на которую опирается угол BOC, равна 2π − ∠BQC, а так как вписанный угол измеряется половиной дуги, на которую он опирается, то∠ВОС
= 2π − 2 ∠ВОС.Остается найти угол ВОС
: ∠ВОС
= π − B + C/2 = π − π − A/2 = π + A/2,следовательно,
∠BQC
= 2π − (π + А) = π − А.Углы ВАС
и BQC дают в сумме π; то же самое можно сказать об углах QBA и QCA, так как сумма всех углов четырехугольника равна 2π. Тем самым мы доказали, что точка Q лежит на окружности, описанной около треугольника ABC.Построение можно провести следующим образом. Строим на отрезке ОО
1, как на диаметре, окружность с центром в точке Q. Радиусом О2Q (О2 — центр описанной окружности) проводим окружность с центром в точке О2. B пересечении этих окружностей получим вершины B и С искомого треугольника.Если точка О
2 лежит вне окружности радиуса, равного ¼ОО1, с центром Q, то задача имеет единственное решение. B противном случае решения нет. (Докажите.)2.6.
Отбросим на время условие, в силу которого точка E лежит на BC, а остальные условия сохраним. Отложим на AB произвольный отрезок AF (рис. P.2.6), а на BC — отрезок CK = AF. Через точку K проведем прямую, параллельную AC, и из точки N раствором циркуля, равным AF, сделаем на этой прямой засечку.Фигура AFGH
, где отрезок GH параллелен KC, будет подобна искомой с центром подобия в точке А. Строим вершину E, которая должна лежать на пересечении прямых BC и АG. Проводим DE параллельно FG.Четырехугольник ADEC
искомый. (Сделайте рисунок для случая, когда угол B тупой.)Докажите, что в обоих случаях задача имеет единственное решение.
2.7.
Проведем через точку M прямую AB так, чтобы ее отрезок, заключенный между сторонами угла, делился в точке M пополам. Для этого построим МС параллельно OA (рис. P.2.7, а) и отложим СВ = ОС. Так как СМ — средняя линия в треугольнике ОВА, то ВМ = МА. Итак, пусть AM
= МВ (рис. P.2.7, б). Проведем произвольную прямую EF через точку M. Покажем, что площадь треугольника ОАВ меньше площади треугольника ОЕF. Проведем AK параллельно OB (если FM < ЕМ). Треугольники AMK и ВМF равны. Следовательно,SОЕf
= SОАМF + SAMK + SAEK > SОАМF + SВМF = SОАВ.2.8.
Вместо искомого треугольника ABC построим треугольник А1АА2, который получается из ABC так, как показано на рис. P.2.8 (А1В = ВА, А2С = СА). Угол А
1АА2 этого треугольника равен α + β + А. Однако 2α = B, а 2β = С (по свойству внешних углов). Поэтомуα + β + А
= B + C/2 + A = π − A/2 + A = π + A/2.Теперь в треугольнике А
1АА2 известны основание А1А2 = 2p, высота, равная hа, и угол при вершине, равный π/2 + А/2. Вершина А будет лежать на пересечении прямой, параллельной А1А2 и отстоящей от А1А2 на расстоянии hа, и сегмента, построенного на отрезке А1А2 и вмещающего угол π/2 + А/2.Вершины B
и С лежат на пересечении А1А2 и перпендикуляров, проведенных через середины А1А и А2А.Задача может иметь два симметричных решения, если высота меньше стрелки сегмента, одно решение, если они равны, и не имеет решений, если hа
больше стрелки сегмента.2.9.
Пусть P — искомая точка. Повернем треугольник АВР на 60° вокруг точки А. При этом точка P перейдет в точку Р1, а точка B — в точку В1 (рис. P.2.9).Так как угол Р
1АР равен 60° и АР1 = АР, то треугольник Р1АР правильный и АР = Р1Р. Таким образом, В1Р1РС — ломаная, составленная из отрезков длины BP, АР и CP соответственно. Так как эта ломаная имеет закрепленные концы в точках В1 и С, то ее длина будет наименьшей, если она выпрямится в отрезок В1С.Итак, точка P
лежит на отрезке В1С. Аналогично можно показать, что точка P лежит на отрезке С1В, вершина С1 которого получена поворотом AC вокруг А на 60°.Отсюда простое построение. На отрезках AB
и AC строим правильные треугольники АВ1В и АС1С, лежащие вне треугольника ABC. Искомая точка P будет лежать на пересечении прямых В1С и С1В.