The female hormones control the estrus cycle—which culminates when the females are ovulating and, usually, broadcasting olfactory and visual cues that they’re available for mating. In many species this doesn’t happen often and doesn’t last long; cows, for example, are interested in sex for about six hours every three weeks. Cows don’t date much. “For most species,” writes Mary Midgley,11
“a brief mating season and a simple instinctive pattern makes of it a seasonal disturbance with a definite routine, comparable to Christmas shopping.” In a wide variety of mammals, from guinea pigs to small monkeys, mating outside of estrus is not only discouraged by the female, it’s also made physically impossible by an organic chastity belt: The vagina is sealed by a membrane or plug grown specially for the purpose, or—even more decisive—it’s fused shut.In contrast, among most humans and some apes, sex is not only possible but is equally probable at virtually any phase of the cycle. Some humans monitor the cycle (by measuring small changes in body temperature) and then
For many animals the ovulation cycle is a few weeks in length. Not many species have periods almost exactly equal to the lunar cycle (the time from new moon to new moon). Whether this peculiarity of humans is more than a coincidence—and if so, why it should be—is unknown.
Mammals suckle their young, but only the females are appropriately endowed.* It’s one of the few cases where the definition of a major classification category in biology, or taxon, is determined by the characteristics of only one of the sexes. Giving milk is also hormonally mediated. Mother’s milk is essential for the young, who are born helpless, unable to digest the adult diet. This is another reason that females spend more time with, and therefore have a greater investment in, the young. The males are generally more interested in other things—dominance, aggression, territoriality, many sex partners.
The connection between steroids and aggression applies with surprising regularity across the animal kingdom. Remove the principal source of sex hormones and aggression declines, not just among the mammals and birds, but in lizards and even fish. Treat castrated males with testosterone and the aggression returns. Give estrogen to intact animals and aggression diminishes, again across all these species. The repeated use of these same steroids for the same functions, turning aggression on and off, for so many different animals, is a testament both to their effectiveness and to their antiquity.
Aggression is adaptive, but only in controlled amounts. The repertoire of aggressive behavior is on call, awaiting only to be disinhibited. The steroids, their production titrated by the social environment and the biological clocks, do the disinhibiting. This being the case, why is it that males are so often more aggressive than females? If the females can generate a little less estrogen and a little more testosterone, can’t they become as aggressive as males? Something like gender equality in aggression occurs in wolves, tree squirrels, laboratory mice and rats, short-tailed shrews, ring-tailed lemurs, and gibbons. In the southern flying squirrel, males are not territorial but females are, and most quarrels between the sexes are initiated by the females—and won by them.13
The clear fact that males are more aggressive than females among us humans (where blood plasma testosterone is about ten times greater in men than in women) by no means commits the rest of the animal kingdom, or even the rest of the primates, to the same arrangement.