Huxley then compares the skeletal and brain anatomies of apes and humans. The “manlike apes” (chimps, gorillas, orangutans, gibbons, and the gibbon-like siamangs—the first three called “greater” and the last two “lesser” apes) all have the same number of teeth as humans; all have hands with thumbs; none has a tail; all arose in the Old World. The skeletal anatomies of chimps and humans are strikingly similar. And “the difference between the brains of the Chimpanzee and of Man,” he concluded,18
“is almost insignificant.”From these data, Huxley then drew the straightforward conclusion that contemporary apes and humans are close relatives, sharing a recent ape-like common ancestor. The conclusion scandalized Victorian England. The outraged reaction of the wife of the Anglican Bishop of Worcester was typical: “Descended from apes! My dear, let us hope that it is not true, but if it is, let us pray that it will not become generally known.”19
Here it is again: the fear that knowledge of the true nature of our ancestors might unravel the social fabric.——
In recent years it has been possible to go much further, to the very heart of life, to the Holy of Holies, and compare, nucleotide by nucleotide, the DNA molecules of two animals. We can now quantify the kinship of different species. We are able to establish molecular pedigrees, DNA genealogies, which provide the most powerful and compelling evidence that evolution has occurred, as well as tantalizing clues on its mode and tempo. The new tools of molecular biology have yielded insights wholly unavailable to previous generations.
Every animal with a backbone has a bloodstream in which hemoglobin is the oxygen carrier. Hemoglobin is composed of four different protein chains wrapped about one another. One of them is called beta-globin. A particular region of the ACGT sequence codes for beta-globin in all these animals, but only about 5 percent of the region is occupied by the actual instructions for this protein chain. Much of the remaining 95 percent are nonsense sequences—so here mutations can accumulate without being winnowed out by selection. When the beta-globin regions of the DNA are compared across the primate order,20
humans are found to be more closely related to chimps than to anyone else. (The human-gorilla connection comes in a close second.) A new basis for our chimp connection is uncovered: not just the bones, the organs, and the brains, but also the genes—the very instructions for making chimps and humans—are almost indistinguishable.The DNA sequence that codes for beta-globin is roughly fifty thousand nucleotides long; that is, along a given strand of the DNA molecule, fifty thousand As, Cs, Gs, and Ts in a particular sequence describe precisely how to manufacture the beta-globin of the species in question. If the sequences of humans and chimpanzees are compared nucleotide by nucleotide, they differ by only 1.7%. Humans and gorillas differ by 1.8%, almost as little; humans and orangutans, 3.3%; humans and gibbons, 4.3%; humans and rhesus monkeys, 7%; humans and lemurs, 22.6%. The more the sequences of two animals differ, the more remote (both in relatedness and, usually, in time) is their last common ancestor.
When ACGT sequences that are mainly active genes are examined, a 99.6% identity is found between human and chimp. At the level of the working genes, only about 0.4% of the DNA of humans is different from the DNA of chimps.21
Another method is first to take the DNA from a human being, unzip the double helix, and separate the two strands. Then do the same for a comparable DNA molecule of some other animal. Put the two strands together and let them link up. You’ve now made a “hybrid” molecule of DNA. Where the complementary sequences are closely the same, the two molecules will tightly bind to each other, forming part of a new double helix. But where the DNA molecules from the two animals differ a great deal, the bonding between the strands will be intermittent and weak, and whole sections of the double helix will be flopping loosely. Now take these hybrid DNA molecules and put them in a centrifuge; spin them up so the centrifugal forces tear the two strands apart. The more similar the ACGT sequences are—that is, the more closely related the two DNA strands are—the more difficult it will be to tear them apart. This method does not rely on selected sequences of DNA information (that coding for beta-globin, for example) but on vast amounts of hereditary material, making up whole chromosomes. The two methods—determining the ACGT sequences of selected portions of DNA, and DNA hybridization studies—give remarkable overall agreement. The evidence that humans are most closely related to the African apes is overwhelming.