Интеграл силы (2.3) мы формировали исходя из положительного направления силы в сторону центра сферы. Интегрирование и графики показали положительное значение силы. Из этого следует вывод: тело в пустой сфере притягивается к её центру так, будто там находится некий массивный объект.
Проблема трактовки притяжения тела внутри сферы
В исходном варианте статья начиналась словами "Известно, что тело внутри полой сферы…". Однако в процессе исследований эта часть фразы была заменена на "
Наши выводы опираются на строгое математическое доказательство. По сути, они – строго доказанная математическая теорема. Следовательно, ошибочным является мнение об отсутствии силу внутри сферы. В чём именно состоит ошибка? Рассмотрим, как получен этот ошибочный вывод на примере работы [3]. Заметим, что, по сути, эту работу можно считать если не перепечаткой, то близкой по тексту к более ранним работам [1, 2].
Рассмотрен шар радиусом R, на поверхности которого находится галактика A. Этот шар с галактикой опоясан шаровым слоем толщиной h. Приводится доказательство того, что на галактику A со стороны этого слоя не оказывается никакого гравитационного действия, притяжения. Другими словами, в однородной Вселенной на эту галактику все другие галактики, вне этого шара не оказывают никакого влияния.
Рассматриваются силы притяжения, действующие на галактику A со стороны галактик, расположенных в этом слое в противоположных от неё направлениях, в объёмах элементов слоя V1
и V2. До этого момента рассуждения вполне корректны. Однако уже следующее утверждение является грубой ошибкой. При сравнивании объёмов элементов утверждается, что их угловые площади S1 и S2 и, соответственно, объёмы пропорциональны квадратам расстояний от галактики до поверхности слоя – r1 и r2. Приводится рисунок, на который мы сразу же добавили неравенство силРис.2.5. Копия рисунка из работы [3]
и уравнение к нему
Автор допускает, вообще-то, очевидную небрежность, ошибку – это уравнение
где φ и μ – полярные углы сферического сегмента.
Каждый из этих полярных углов имеет вершину в начале своих
Считая, что полярные углы φ и μ для всех трёх сфер одинаковы, каждая из площадок, дифференциал площади, например, в (3) это S1
, обозначена с "точки зрения" соответствующих сфер: сферы с радиусом R и началом координат в центре этой сферы, и сферы с радиусом r1 и началом координат в точке А. Но эти две площадки S1 и S1RУсловность состоит в том, что это уравнение справедливо для дифференциалов, но не для конечных величин S и V, в случае которых объём V не является прямоугольником – это усечённая пирамида, площадь которой определяется другим уравнением.
3. Притяжение тела к двум точкам
Заметим, что обруч в наших исследованиях фактически является сечением сферы. Сила притяжения в обоих случаях зависит на местоположение пробного тела. В обоих случаях сила равна нулю в центре и имеет некоторое значение вблизи внешнего объекта – обруча или сферы.
Ещё одним вариантом, очевидно, является следующее сечение – сечение обруча. В этом случае объект разделяется надвое, теперь это просто две точки. Сразу же заметим, что и в этом случае сила притяжения тела, находящегося точно посередине между точками, равна нулю. Также можно предположить, что в случае сближения тела с одной из массивных точек сила притяжения будет возрастать до бесконечности. Чтобы избежать этого, нужно как-то связать объём точки с расстоянием до пробного тела. Принимая за положительное направление силы вправо, к правой массивной точке, в общем случае результирующая сила притяжения тела к этим двум точкам равна