Эвристика "из уст в уста" предполагает, что человек принимает решения на основе рекомендаций других людей, о чем говорилось в начале этой главы. Компании используют его для поиска хороших сотрудников и надежных деловых партнеров, соискатели - для отбора потенциальных работодателей, а потребители - для принятия решения о том, где пообедать и что купить. Чтобы быть успешным, "сарафанное радио" требует доверительных отношений и долгосрочной зависимости между тем, кто спрашивает, и тем, кто рекомендует. Оно перестает работать, когда этим доверием злоупотребляют, особенно когда рекомендатели преследуют иные цели, чем предоставление наиболее правдивой информации или подходящих альтернатив.
Мудрость толпы
В небольшой статье, опубликованной в журнале Nature, сэр Фрэнсис Гальтон сообщил о первом документально подтвержденном случае мудрости толпы. 20 Около 800 человек заключили пари на вес одетого быка на сельской ярмарке в Плимуте, Англия. Гальтон собрал все билеты со ставками и обнаружил, что среднее значение оценок всего на один фунт меньше реального веса.
Мудрость толпы: Оценка величины путем усреднения независимых суждений многих людей.
В основе "мудрости толпы" лежит закон больших чисел в статистике: чем больше выборка, тем ближе среднее значение выборки к истинному значению. Ключевым условием точности среднего суждения является независимость отдельных оценок. Если на них влияют другие - например, волевой лидер, - оценки не будут независимыми, и среднее значение может быть необъективным, как при групповом мышлении. В бизнесе лидеры слишком часто высказывают свое собственное мнение первыми, что влияет на то, что говорят (или даже думают) подчиненные, и делает "мудрость толпы" больше не экологически рациональной эвристикой. Чтобы избежать этого подводного камня, может быть полезна другая эвристика: сначала слушай, потом говори. Эта эвристика предназначена для лидеров, а не для подчиненных. Она делает возможным сбор плодов "мудрости толпы".
В эпоху Интернета и социальных сетей люди все чаще при выборе ресторанов, книг и многих других товаров опираются на пользовательские рейтинги , надеясь воспользоваться мудростью толпы. Если эти рейтинги составляются независимо и непредвзято, то они являются хорошим руководством к действию. Однако эти условия не всегда соблюдаются. Отчет за 2021 год показывает, что среди всех онлайн-отзывов, размещенных в 2020 году, 31 процент, по оценкам, был поддельным. 21 Одним из источников поддельных отзывов являются "бот-фермы", которые за определенную плату манипулируют рейтингами, звездами, лайками и сердечками.
Экологическая рациональность эвристики
Может ли быть так, что Элон Маск делает лучший выбор на основе одной причины, чем используя множество причин или целый центр оценки? Изучение экологической рациональности эвристик, основанных на одной причине, дает ответ на этот вопрос - и он утвердительный. Можно доказать, что существуют условия, при которых опора на одну причину так же хороша или даже лучше, чем рассмотрение большего количества информации. Условие доминирующей подсказки (о котором пойдет речь дальше) - одно из них. Однако изучение экологической рациональности также предписывает, когда другие классы эвристик должны быть успешными. Мы уже упоминали некоторые из этих условий. Здесь мы сосредоточимся на двух общих результатах. Первый показывает, что распределение весов подсказок служит ориентиром для выбора эвристик из набора адаптивных инструментов, а второй объясняет, почему простые эвристики могут предсказывать лучше, чем сложные модели в ситуациях неопределенности.
Признаки доминирования и равенства
Сигналы определяют как абсолютную, так и относительную эффективность эвристики. Как правило, эвристики, основанные на одной причине, экологически рациональны в условиях, когда существует доминирующая подсказка, в то время как эвристики равенства экологически рациональны, когда подсказки имеют равную силу. Чтобы понять, почему так происходит, рассмотрим ситуацию, в которой для принятия бинарного решения, например, нанимать или не нанимать, доступны n бинарных подсказок.
Линейная модель, которая взвешивает и складывает все сигналы, имеет вид
y = w1x1 + w2x2 + ... + wnxn
где y - критериальная переменная, xI - значение подсказки i (i = 1, ..., n), а wI - вес решения подсказки, который упорядочен и отражает относительный вклад подсказки после рассмотрения подсказки или подсказок более высокого ранга. Для упрощения все веса положительны. Модель предписывает "нанять", если y положительно; в противном случае - "не нанимать".
Эта линейная модель не может принимать решения более точно, чем эвристика с одним ключом, которая основывает свои решения исключительно на самом верном ключе (т. е. ключе1), если сумма весов всех других ключей меньше веса ключа1 - таким образом, другие ключи не могут отменить решения, принятые ключом1. 22 Это называется условием доминирующего ключа, при котором значения весов ключей таковы, что