Читаем Smart Management полностью

Почему алгоритмы искусственного интеллекта могут побеждать лучших людей в шахматах, го и Jeopardy!, но не могут превзойти обычных людей в предсказании рецидивизма и поиске подходящего партнера? 5 Ответ можно получить из различия между малыми и большими мирами, введенного в главе 2. Принцип стабильного мира определяет области и границы, в которых алгоритмы ИИ могут преуспеть.

Принцип стабильного мира: Сложные алгоритмы лучше работают в четко определенных, стабильных ситуациях, когда доступны большие объемы данных. Адаптивная эвристика эволюционировала, чтобы справляться с неопределенностью, независимо от того, большие или малые данные доступны.

Этот принцип позволяет понять, почему алгоритмы ИИ дают отличные результаты для одних задач, но не для других. В качестве примера можно привести успех Watson в игре "Jeopardy!", но провал в медицинских исследованиях, поскольку, в отличие от "Jeopardy!", лечение рака не является четко определенной проблемой с устойчивыми правилами.

Герберт Саймон - один из основателей искусственного интеллекта. В его работах ИИ включает в себя анализ эвристик, которые эксперты используют при решении проблем, и их включение в программное обеспечение, чтобы сделать компьютеры умными. Эвристический поиск стал частью прогресса в области ИИ и позволил справиться с неопределенностью и трудноразрешимостью, чего не мог сделать более ранний, основанный на логике ИИ. Именно поэтому между ИИ и эвристикой нет реальной конкуренции. Однако великие успехи ИИ в шахматах и го основаны не на этой программе психологического ИИ, а скорее на грубой вычислительной силе. Вспомните из главы 2, что психологический ИИ анализирует эвристики, которые используют люди, и внедряет их в алгоритмы, чтобы сделать ИИ умнее. Сегодня большинство алгоритмов машинного обучения пытаются решать задачи, не используя никаких знаний об эволюционировавшем мозге. Хотя сложные сети и называются "глубокими искусственными нейронными сетями", они имеют мало общего с человеческим интеллектом и, по сути, являются сложными рекурсивными версиями нелинейных множественных регрессий. Таким образом, противопоставление должно проводиться не между алгоритмами ИИ в целом и эвристиками, поскольку эвристики, такие как 1/N и быстрые и экономные деревья, тоже являются алгоритмами. Противопоставление проводится между сложными алгоритмами, такими как случайный лес и глубокое обучение, с одной стороны, и простыми, адаптивными алгоритмами (эвристиками) - с другой.

Принцип стабильного мира помогает прояснить соотношение между сложными алгоритмами и эвристикой. Если проблема хорошо определена и стабильна во времени, то сложные алгоритмы и большие данные, скорее всего, оправдают себя; если нет, то простые эвристики могут быть столь же точными или даже лучше, оставаясь при этом прозрачными и понятными. Далее мы приводим несколько примеров. В каждом из них мы противопоставляем решения, полученные с помощью психологического ИИ - то есть простых эвристик, вдохновленных психологией, - решениям, полученным с помощью сложных алгоритмов машинного обучения.


Прогнозирование покупок клиентов

В главе 2 мы упоминали эвристику "перерыва", которую опытные менеджеры используют для прогнозирования того, будет ли клиент продолжать совершать покупки. Эта эвристика, основанная на одной подсказке, классифицирует клиента как неактивного, если он не совершал покупок в течение x месяцев, а в противном случае - как активного. Согласно статье в New York Times, авиакомпании использовали эвристику хиатуса для классификации своих часто летающих пассажиров как минимум с 1980-х годов. 6 Однако большинство исследований строят и совершенствуют сложные модели, а не пытаются выяснить, как опытные менеджеры на самом деле предсказывают будущие покупки и учатся на этом.

Два исследователя в области маркетинга, Маркус Вюббен и Флориан фон Вангенхайм, изучили точность прогнозирования эвристики хиатуса по сравнению с двумя широко используемыми стохастическими моделями - Парето/NBD (отрицательное биномиальное распределение) и BG/NBD (BG = бета-геометрическое). 7 Они протестировали эти модели в трех компаниях, каждая из которых предоставила более 2000 записей о клиентах. Оказалось, что эвристика хиатуса дает наиболее точные прогнозы. Интересно, что значения единственного свободного параметра эвристики (т. е. продолжительность перерыва в работе в течение x месяцев), которые, по расчетам исследователей, дадут ей наибольшую точность, оказались очень близки к тем, которые интуитивно использовали менеджеры, работающие в соответствующих компаниях (т. е. около девяти месяцев).

Перейти на страницу:

Похожие книги

Наемные работники: подчинить и приручить
Наемные работники: подчинить и приручить

Сергей Занин — предприниматель, бизнес-тренер и консультант с многолетним опытом. Руководитель Пражской школы бизнеса, автор популярных книг «Бизнес-притчи», «Как преодолеть лень, или Как научиться делать то, что нужно делать», «Деньги. Как заработать и не потерять».Благодаря его книгам и тренингам тысячи людей разобрались в собственных амбициях, целях и трудностях, превратили размытые желания «сделать карьеру», «стать успешным», «обеспечить семью», «реализовать себя» в ясную программу последовательных действий.В новой книге С. Занина вы найдете ответы на вопросы:Почему благие намерения хозяев вызывают сопротивление персонала?Как сократить срок окупаемости работников?Почему кнут эффективнее пряника?Как платить словами вместо денег?Есть ли смысл в программах «командостроительства»?Чем заняты работники, когда их не видит хозяин?Как работники используют слабости хозяина?Почему владелец бизнеса всегда умнее своих работников?К какому типу хозяина или работника вы относитесь?Суждения, высказанные в книге, могут вызвать как полное одобрение, так и неприязнь к автору. Это зависит от того, кем сегодня является читатель — наемным сотрудником или владельцем бизнеса.Сайт Сергея Занина — www.zanin.ru

Сергей Геннадьевич Занин , Сергей Занин

Деловая литература / Карьера, кадры / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас

Эта книга подробно рассказывает о важнейшем экономическом и социальном явлении нашего времени, которое поставили себе на службу Uber, Airbnb, Amazon, Alibaba, PayPal, eBay и другие наиболее динамично растущие бренды, а именно о платформах — новой бизнес‑модели, использующей технологии объединения людей, организаций и ресурсов в интерактивной экосистеме.Если вы хотите узнать, что такое платформы, как они работают, как устроены компании, использующие эту модель, и как создать успешный платформенный бизнес, то эта книга для вас. «Революция платформ» позволит вам легко сориентироваться в новом, меняющемся мире, в котором все мы живем, работаем и развлекаемся.На русском языке публикуется впервые.

Джеффри Паркер , Маршалл ван Альстин , Санджит Чаудари , Санджит Чаудари Альстин

Деловая литература / Деловая литература / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес