Читаем Smart Management полностью

Однако модели, хорошо справляющиеся с предсказаниями вне выборки, могут столкнуться с проблемами, когда их применяют для предсказаний вне популяции, когда модели, обученные на наборах данных, представляющих одну популяцию, используются для предсказания моделей другой популяции. В данном случае популяция имеет свободное определение. Это может быть группа людей, сфера деятельности или события в определенный период времени или в определенном месте. В мире VUCA обобщаемость модели для разных групп населения может быть весьма сомнительной. Например, в случае принятия решений о выдаче кредитов эффективные модели, разработанные для небольших компаний, работающих в крупных городах в 2010-х годах, могут перестать работать для других типов компаний или даже для тех же типов компаний в 2020-х годах, поскольку могут измениться сигналы, политика и экономическая среда. Эвристика умножения на 6 - еще один наглядный пример: она хорошо работает для прогнозирования доходов от покупок в приложениях, но не для разных видов доходов. В этом случае решение состоит в том, чтобы оценить мультипликатор для других областей на основе данных. В следующем обсуждении мы приведем еще два примера этой проблемы в здравоохранении.

После вспышки пандемии COVID-19 больницы и медицинские исследователи по всему миру разработали сотни алгоритмов искусственного интеллекта, чтобы помочь диагностировать пациентов и управлять ресурсами. Эффективные алгоритмы не только спасли бы мир, но и имели бы огромный коммерческий потенциал. Но в 2021 году, через два года после начала пандемии, в нескольких обзорных исследованиях было заявлено, что алгоритмы в основном бесполезны, а некоторые даже могут быть вредны. 19 У этого колоссального провала есть множество причин. Одной из главных является невозможность обобщить алгоритм за пределами набора данных, на котором он был обучен.

По словам Дерека Дриггса, соавтора одного из обзорных исследований, их группа из Кембриджского университета обучала свой алгоритм на наборе данных со снимками грудной клетки, сделанными, когда пациенты находились в положении лежа или стоя. 20 Поскольку те, кого сканировали в положении лежа, как правило, были более серьезно больны, алгоритм использовал этот весьма показательный, но ложный признак (т. е. положение тела) при классификации пациентов с высоким и низким риском. В другом случае исследователи обучали свои алгоритмы на сканах здоровых детей как на экземплярах пациентов, не относящихся к группе COVID-19. В результате алгоритмы научились отличать детей от взрослых, но не отличать неинфицированных, большинство из которых были взрослыми, от инфицированных, поэтому их диагностическая ценность была невелика. Эти примеры показывают, что даже если предсказание вне выборки является превосходным, предсказание вне популяции все равно может оказаться неудачным, поскольку алгоритмы могут улавливать сигналы, которые не имеют отношения к задаче.

Epic Systems - крупнейшая в США компания по разработке программного обеспечения для здравоохранения. К 2021 году ее программное обеспечение использовалось в более чем 2400 больницах по всему миру и для ведения медицинских карт примерно двух третей всего населения США. Вооружившись таким обилием данных, Epic разработала различные алгоритмы медицинской диагностики на основе искусственного интеллекта. Например, ее модель для выявления сепсиса широко используется в больницах США. Поскольку эта модель, как и большинство алгоритмов "черного ящика", является собственной, мало кто за пределами компании знает, как она работает, но это не мешает исследователям проверять ее диагностическую валидность. В одном из исследований группа ученых обнаружила, что среди 2 552 пациентов с сепсисом из 38 000 госпитализаций модель Epic не поставила диагноз 67 %; кроме того, среди 7 000 предупреждений о сепсисе, которые выдала модель, только 12 % оказались верными, что привело к огромному количеству ложных срабатываний. 21 В целом использование модели не только подвергает опасности многих пациентов, но и приводит к растрате большого количества ресурсов больницы.

Это исследование - не единичный случай. Другое исследование показало, что точность модели сепсиса Epic с годами снижалась и в конце периода едва превышала случайный уровень . 22 Основной причиной такого снижения является сдвиг данных, который происходит, когда в меняющемся мире популяция меняется со временем, но алгоритм остается неподвижным с момента обучения. Конкретная причина неудачи модели Epic была двоякой: изменение в новой системе кодирования заболеваний, которая не была обновлена в модели, и приток новой группы пациентов. Осознав проблемы, Epic пересмотрела модель. Но будет ли новая модель намного лучше, еще предстоит выяснить.

В целом, проблемы, связанные с предсказаниями вне популяции, сложнее решать для сложных алгоритмов, чем для эвристик. Алгоритмы часто слишком непрозрачны, чтобы можно было понять, почему и когда они совершают ошибки, что затрудняет их улучшение.


В прозрачности мы уверены

Перейти на страницу:

Похожие книги

Наемные работники: подчинить и приручить
Наемные работники: подчинить и приручить

Сергей Занин — предприниматель, бизнес-тренер и консультант с многолетним опытом. Руководитель Пражской школы бизнеса, автор популярных книг «Бизнес-притчи», «Как преодолеть лень, или Как научиться делать то, что нужно делать», «Деньги. Как заработать и не потерять».Благодаря его книгам и тренингам тысячи людей разобрались в собственных амбициях, целях и трудностях, превратили размытые желания «сделать карьеру», «стать успешным», «обеспечить семью», «реализовать себя» в ясную программу последовательных действий.В новой книге С. Занина вы найдете ответы на вопросы:Почему благие намерения хозяев вызывают сопротивление персонала?Как сократить срок окупаемости работников?Почему кнут эффективнее пряника?Как платить словами вместо денег?Есть ли смысл в программах «командостроительства»?Чем заняты работники, когда их не видит хозяин?Как работники используют слабости хозяина?Почему владелец бизнеса всегда умнее своих работников?К какому типу хозяина или работника вы относитесь?Суждения, высказанные в книге, могут вызвать как полное одобрение, так и неприязнь к автору. Это зависит от того, кем сегодня является читатель — наемным сотрудником или владельцем бизнеса.Сайт Сергея Занина — www.zanin.ru

Сергей Геннадьевич Занин , Сергей Занин

Деловая литература / Карьера, кадры / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас

Эта книга подробно рассказывает о важнейшем экономическом и социальном явлении нашего времени, которое поставили себе на службу Uber, Airbnb, Amazon, Alibaba, PayPal, eBay и другие наиболее динамично растущие бренды, а именно о платформах — новой бизнес‑модели, использующей технологии объединения людей, организаций и ресурсов в интерактивной экосистеме.Если вы хотите узнать, что такое платформы, как они работают, как устроены компании, использующие эту модель, и как создать успешный платформенный бизнес, то эта книга для вас. «Революция платформ» позволит вам легко сориентироваться в новом, меняющемся мире, в котором все мы живем, работаем и развлекаемся.На русском языке публикуется впервые.

Джеффри Паркер , Маршалл ван Альстин , Санджит Чаудари , Санджит Чаудари Альстин

Деловая литература / Деловая литература / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес