Это, однако, нелепо. Ведь линия, конечно, имеет знак точки в этой определенной части, и эта точка своим вращением в этой части описывает окружность. Ведь то, что линия не имеет знака точки в какой-нибудь своей части или знак точки своим движением не описывает окружности, — это противоречит рассуждению геометров. Если же окружности сливаются, то они непрерывны или так, что занимают одно и то же место, или так, что они мыслятся одна за другой, причем между ними не может поместиться ни один знак, поскольку попадающий между ними знак точки должен описывать окружность. И если они занимают одно и то же место, то они все станут одним [кругом], и поэтому наибольший круг не будет различаться от наименьшего. Ведь если самый внутренний круг, расположенный у центра, — наименьший, а самый внешний круг, расположенный у периферии, — наибольший и при этом все круги занимают одно и то же место, то наименьший круг будет равен наибольшему. А это противоречит очевидности. Следовательно, круги не сливаются настолько, чтобы занимать одно и то же место. Если же они так расположены по отношению друг к другу, что между ними не помещается никакой знак точки, то они занимают ширину плоскости от центра до крайней окружности. И вот поскольку то, что заполняет ширину, по необходимости имеет ширину, то окружности, заполняющие ширину плоскости, будут иметь ширину. Но окружности суть линии; значит, линии не лишены ширины.
Можно построить аналогичное доказательство, имеющее тот же самый смысл. Геометры говорят, что прямая, описывающая круг, вращаясь, описывает круг сама собою. Поэтому мы скажем им следующее: "Если описывающая круг прямая описывает его сама собою, то линия не есть длина без ширины; однако, прямая, описывающая круг, по их мнению, сама собою описывает круг; следовательно, линия не есть длина без ширины". Ведь когда прямая, идя от центра, вращается и сама собою описывает круг, то прямая линия или проходит по всем частям поверхности, находящейся внутри окружности, или по некоторым проходит, а по некоторым нет. Но если она проходит по некоторым частям, а по другим не проходит, то, конечно, она не описывает круга, проходя по некоторым частям плоскости, а другие минуя. Если же она проходит по всем частям, она измерит [собою] всю ширину внутри окружности, а то, что измеряет ширину, само должно иметь ширину. Ведь то, что способно измерить ширину, обладает шириной, при помощи которой измеряет. Следовательно, и поэтому необходимо сказать, что линия не есть длина без ширины.
То же самое становится ясно, когда геометры говорят, что горизонтальная сторона четырехугольника, двигаясь, сама собою измерит площадь параллелограмма. Ведь если линия есть длина без ширины, то, конечно, и сторона четырехугольника, будучи линией без ширины, не измерит площади параллелограмма, имеющего ширину. Или она, измеряя, и сама будет иметь ширину, при помощи которой она измеряет. Поэтому или их теорема становится ложною, или ложно положение, что линия есть длина без ширины.
Они говорят, что цилиндр касается плоскости по прямой линии, а, катаясь по поверхности, благодаря наложению все новых и новых прямых измеряет плоскость. Если цилиндр касается плоскости по прямой линии и, катаясь по поверхности, благодаря наложению все новых и новых прямых измеряет плоскость, то, конечно, плоскость состоит из прямых линий и поверхность цилиндра также из прямых. Поэтому если плоскость имеет ширину и также имеет ее поверхность цилиндра, а заполняющее ширину не лишено ширины, поэтому линии, заполняющие ширину, не могут быть лишенными ширины.