Но он не создаст линии с оставлением одного места и с занятием другого, поскольку он остается первоначальной точкой, и, в каком смысле, занимая первоначальное место, он назывался точкой, а не линией, в таком же смысле и, занимая второе, третье и последующие места, он будет не линией, но опять точкой. Если же он создает линию, занимая одно место и простираясь на другое, то он распространяется или на делимом, или на неделимом месте. И если на неделимом, то он остается точкой и не становится линией, поскольку линия есть нечто делимое. Если же он распространяется на делимом месте, то, поскольку распространяющееся на делимом месте делимо и имеет части, а имеющее части есть тело, постольку знак точки будет делимым и телом, — чего они не желают [допускать]. Следовательно, линия не есть один знак точки. Но не будет линией и множество точечных знаков, лежащих в виде ряда, Ведь эти знаки точки по своему понятию или взаимно соприкасаются, или не касаются друг друга и разделяются некоторыми промежутками. Если между ними имеются промежутки, то они уже не составят одной линии. Если же они взаимно соприкасаются, то они касаются или целым целого, или частями частей. И если они касаются частями частей, то они уже не будут неделимы. Ведь точка, стоящая между двумя другими точками, будет иметь несколько частей: одну часть, которой она касается передней точки, другую — которой касается задней, третью — которой касается плоскости, четвертую — которой касается верхней части. Поэтому она уже не будет не имеющей частей, но будет многочастной. Если же [здесь] целое касается целого, то точки поместятся в точках и займут одно и то же место. Но если они займут одно и то же место, то уже не будет их ряда, чтобы образовалась линия, но все они станут одной точкой.
Итак, если для того чтобы мыслить тело, надо мыслить длину, а для длины линию, а для нее точку, то, поскольку доказано, что линия не есть знак точки и не состоит из этих знаков, постольку линия не существует. Если же нет линии, то нет и длины. Отсюда следует, что никакое тело не существует [вообще].
Мы только что доказали немыслимость линии, разбирая знак точки. Но можно и непосредственно устранить ее, разобрав собственное ее понятие. Именно, геометры говорят, что линия есть длина без ширины, а мы, скептики, не можем понять длины, не имеющей ширины, ни в чувственном, ни в умопостигаемом. Ведь какую бы чувственную длину мы ни воспринимали, мы воспринимаем ее с некоторой шириной. Поэтому в области чувственного невозможно никакое тело без ширины. Невозможно представить себе такую длину и 'в области умопостигаемого. Ведь хотя мы можем мыслить одну длину уже другой, однако когда мы, сохраняя ту же длину, понемногу расщепляем мысленно ширину и делаем это до известного предела, то мы мыслим, что ширина становится все меньше и меньше; когда же мы вздумаем сразу лишить длину ширины, то мы уже не мыслим также и длины, но с упразднением ширины упраздняется и понятие о длине.
Кроме того, вообще все мыслимое мыслится или на основании появления очевидных [признаков], или на основании исхождения от очевидного. И это происходит разнообразно: то по сходству, то по присоединению, то по аналогии (и притом или увеличительной, или уменьшительной). На основании появления очевидных [признаков] мыслится, например, белое и черное, сладкое и горькое. Ведь они хотя и чувственны, тем не менее мыслятся. На основании исхождения от очевидного мыслится уподобительно — например, на основании изображения Сократа — отсутствующий Сократ. Соединительно же — например, на основании человека и коня — ни человек, ни конь, а сложенный из обоих гиппокентавр. По аналогии, увеличительной или уменьшительной, — например, от наружности обыкновенного по росту человека, увеличив в воображении [обычно] встречающегося нам, — мы измыслили киклопа, который не сходен