Читаем Стратегии решения математических задач полностью

Вместе с тем есть еще более интересный подход. Допустим, мы рассматриваем более короткий ряд чисел, например 3 + 4 + 5 + 6 + 7. Их сумма (25) при делении на 5 дает среднее, а именно 5, которое оказывается средним числом ряда. Для ряда в нашей задаче средним число является 10-й член, а поскольку целые числа последовательны, этот член является также средним арифметическим, или средним числового ряда из 19 членов. Таким образом, чтобы найти среднее, нужно просто взять сумму (95) и разделить ее на количество членов ряда (19). Ответ — 5. Эта упрощенная версия задачи позволяет представить исходное задание в значительно более простой форме и, таким образом, облегчить решение.

Зачастую можно не ограничиваться простым уменьшением сложности исходной задачи, а применить также и другие наши стратегии. Например, найдите десятичное значение числа 1/500 000 000 000.

Воспользоваться калькулятором здесь не удастся, поскольку дисплеи большинства из них не воспроизводят 12-значные числа. Применим две другие стратегии: организуем данные и найдем закономерность. Решим ряд более простых версий нашей задачи, представим результаты в табличной форме, а потом посмотрим, нет ли в них какой-либо закономерности.



Здесь определенно просматривается закономерность. Количество нулей в знаменателе равно количеству нулей между запятой и 2. Поскольку в знаменателе 11 нулей после 5, между запятой и 2 должно быть тоже 11 нулей:



Обратите внимание, насколько упрощенная версия(и) исходной задачи вместе с двумя другими стратегиями облегчают решение. Имейте в виду, что использование нескольких стратегий для решения задачи не редкость.

Задача 6.1

Баскетбольная команда принимает участие в конкурсе на лучшее исполнение штрафных бросков. Первый игрок успешно выполняет x штрафных бросков, второй — y, а третий — количество бросков, равное среднему арифметическому количества бросков первых двух игроков. Каждый последующий игрок успешно выполняет такое количество бросков, которое равно среднему арифметическому бросков всех предыдущих игроков. Сколько успешных штрафных бросков сделает 12-й игрок?

Обычный подход

Некоторые пытаются решить такую задачу через определение среднеарифметического значения для каждого из 12 игроков по очереди. На это нужно много времени и сил. К тому же очень легко сделать ошибку при вычислениях. У задачи наверняка должно существовать более рациональное решение.

Образцовое решение

Мы начнем с анализа более простой аналогичной задачи. Заменим x и y простыми числами и посмотрим, что происходит. Допустим, первый игрок сделал 8 штрафных бросков (x), а второй — 12 (y). Тогда счет третьего игрока будет равен их среднему арифметическому, т. е. Четвертый игрок наберет среднее арифметическое бросков первых трех игроков, т. е. а пятый — среднее арифметическое бросков первых четырех игроков, т. е. Ну вот! Счет любого игрока после первых двух всегда равен среднему арифметическому успешных бросков первых двух игроков. Правильным ответом на эту задачу будет среднее арифметическое успешных бросков первых двух игроков, а именно Упрощенная аналогичная задача позволила нам определить метод, который нужно использовать для быстрого решения исходной задачи.

Задача 6.2

Сумма расстояний от любой точки внутри или на сторонах равностороннего треугольника до трех сторон всегда постоянна. Чему равна сумма этих расстояний, если сторона равностороннего треугольника равна 4?

Обычный подход

Существуют несколько способов решения этой задачи. Один из наиболее простых способов — выбрать какую-нибудь точку внутри равностороннего треугольника (т. е. сделать нечто вполне ожидаемое) и провести из нее три перпендикуляра к сторонам (рис. 6.1).



Приравняв площадь ΔABC и сумму площадей треугольников APB, PBC и CPA при использовании трех высот x, y, z и основания 4, мы получим площадь:



Таким образом, h = x + y + z. В нашем случае высота равностороннего треугольника равна 2 √3. Значит x + y + z = 2 √3.

Образцовое решение

Без ущерба общему смыслу задачи рассмотрим более простой аналогичный пример, поскольку мы вправе поместить точку P в любом месте внутри равностороннего треугольника или на его сторонах. Если совместить точку P с точкой A, то решение становится очевидным. Перпендикуляры к сторонам AB и AC имеют длину 0, а перпендикуляр к стороне BC — это просто высота треугольника, или 2 √3. Обратите внимание на то, что такую стратегию можно также классифицировать, как анализ экстремальных ситуаций. Мы рассмотрели экстремальную ситуацию, в которой точка совмещена с вершиной треугольника. Это лишний раз подчеркивает гибкость выбора стратегии.

Задача 6.3

В приведенных ниже выражениях m и n — положительные целые числа, каждое из которых больше 1. Какое из выражений имеет наибольшее значение?


Обычный подход

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука