Читаем Стратегии решения математических задач полностью

Расстояние, пройденное первым поездом равно 60t, а второго — 40t. Суммарное расстояние, пройденное поездами, составляет 800 км. Таким образом, 60t + 40t = 800, а t = 8 часам. Иначе говоря, пчела летала 8 часов. Теперь можно найти расстояние, которое пролетела пчела: 8 × 80 = 640 км. Внешне невероятно трудное задание определить расстояние, пройденное летающей туда-сюда пчелы, было сведено к довольно обычной задаче «на равномерное движение», решение которой очевидно.

Задача 6.7

Имеется произвольно начерченная пентаграмма, показанная на рис. 6.3. Определите, чему равна сумма острых углов при ее вершинах.


Обычный подход

Большинство, к сожалению, пытается измерить углы с помощью транспортира (надо надеяться, с достаточной точностью). На основании полученного результата строятся предположения о том, какой должна быть эта сумма.

Образцовое решение

Мы же воспользуемся стратегией решения упрощенной аналогичной задачи. Иначе говоря, поскольку форма, или правильность не определена, предположим, что это пентаграмма, вписанная в окружность, как показано на рис. 6.4. Если посмотреть на острые углы пентаграммы, можно заметить, что каждый из них является вписанным в окружность углом, равным по определению половине дуги, на который он опирается. Например, Глядя на дуги оставшихся четырех острых углов пентаграммы, видно, что в сумме они составляют полную окружность. Итак, мы знаем, что сумма углов равна половине суммы дуг, на которые они опираются, т. е. она равна половине окружности, или 180º.


Задача 6.8

Какое из следующих чисел имеет наибольшее значение?

148, 242, 336, 430, 524, 618, 712

, 86

Обычный подход

С помощью компьютерной программы или даже калькулятора, который может оперировать большими числами, можно попытаться реально определить значение каждого числа. Однако такой подход утомителен и требует много времени. Тем не менее он имеет право на существование.

Образцовое решение

Воспользуемся стратегией решения более простой аналогичной задачи. Даже при быстром взгляде на числа видно, что показатели степени кратны 6. Если извлечь корень шестой степени из каждого члена ряда (или возвести его в степень), то можно упростить сравнение. Иначе говоря, мы знаем, что все исходные числа являются производными 6-й степени. Таким образом, наибольшее значение в следующем ряду будет связано с наибольшим значением исходных чисел, которые требуется сравнить.

18, 27, 36, 45, 54, 63

, 72, 81.

Значения чисел в этом ряду определить несложно:

27 = 128; 36 = 729; 45 = 1024; 54 = 625; 63 = 216.

Остальные числа явно меньше. Итак, наибольшее значение в ряду из восьми чисел, возведенных в степень, имеет 430, которое можно представить как (45)6

.

Задача 6.9

Чтобы растянуть удовольствие от бутылки вина объемом 16 унций, Дэвид придумал следующее. В первый день он выпивает только 1 унцию вина и доливает в бутылку столько же воды. Во второй день он выпивает 2 унции смеси вина с водой и опять доливает в бутылку столько же воды. На третий день он выпивает 3 унции смеси вина с водой и вновь доливает в бутылку столько же воды. Процесс продолжается до тех пор, пока на 16 день Дэвид не опорожняет всю бутылку объемом 16 унций. Сколько всего унций воды выпил Дэвид?

Обычный подход

В задаче вроде этой очень легко утонуть в деталях. Некоторые, наверное, уже составляют таблицу, вносят в нее данные об объеме вина и воды в бутылке каждый день и пытаются вычислить пропорциональные количества той и другой жидкости, выпиваемой Дэвидом каждый день. Задачу легче решить, взглянув на нее с другой точки зрения, а именно, задавшись вопросом, сколько воды Дэвид добавляет в смесь каждый день. Поскольку он в конечном итоге опорожняет бутылку (на 16-й день), и в ней ничего не остается, Дэвид, надо полагать, выпивает всю долитую воду. В первый день он долил 1 унцию воды, во второй — 2 унции, в третий — 3 унции. На 15-й день в бутылку было добавлено 15 унций воды. (Не забывайте, что в 16-й день вода не добавлялась.) Таким образом, количество воды, выпитой Дэвидом, равно 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 унциям.

Образцовое решение

Хотя приведенное выше решение имеет право на существование, можно рассмотреть чуть более простую аналогичную задачу и определить, сколько жидкости Дэвид выпил в целом, а потом просто вычесть из результата объем вина, т. е. 16 унций.

Таким образом, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136, и 136 − 16 = 120.

Дэвид выпил 136 унций жидкости, из которой 120 унций приходилось на воду.

Глава 7

Организация данных

Одной из наиболее важных стратегий является организация данных, хотя, на первый взгляд, это понятно и без слов. Иначе говоря, все должны автоматически упорядочивать данные из условий задачи. В жизни мы делаем это подсознательно каждый день.

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука