Расстояние, пройденное первым поездом равно 60
Задача 6.7
Имеется произвольно начерченная пентаграмма, показанная на рис. 6.3. Определите, чему равна сумма острых углов при ее вершинах.
Обычный подход
Большинство, к сожалению, пытается измерить углы с помощью транспортира (надо надеяться, с достаточной точностью). На основании полученного результата строятся предположения о том, какой должна быть эта сумма.
Образцовое решение
Мы же воспользуемся стратегией решения упрощенной аналогичной задачи. Иначе говоря, поскольку форма, или правильность не определена, предположим, что это пентаграмма, вписанная в окружность, как показано на рис. 6.4. Если посмотреть на острые углы пентаграммы, можно заметить, что каждый из них является вписанным в окружность углом, равным по определению половине дуги, на который он опирается. Например,
Задача 6.8
Какое из следующих чисел имеет наибольшее значение?
148
, 242, 336, 430, 524, 618, 712, 86Обычный подход
С помощью компьютерной программы или даже калькулятора, который может оперировать большими числами, можно попытаться реально определить значение каждого числа. Однако такой подход утомителен и требует много времени. Тем не менее он имеет право на существование.
Образцовое решение
Воспользуемся стратегией решения более простой аналогичной задачи. Даже при быстром взгляде на числа видно, что показатели степени кратны 6. Если извлечь корень шестой степени из каждого члена ряда (или возвести его в
18
, 27, 36, 45, 54, 63, 72, 81.Значения чисел в этом ряду определить несложно:
27
= 128; 36 = 729; 45 = 1024; 54 = 625; 63 = 216.Остальные числа явно меньше. Итак, наибольшее значение в ряду из восьми чисел, возведенных в степень, имеет 430
, которое можно представить как (45)6.Задача 6.9
Чтобы растянуть удовольствие от бутылки вина объемом 16 унций, Дэвид придумал следующее. В первый день он выпивает только 1 унцию вина и доливает в бутылку столько же воды. Во второй день он выпивает 2 унции смеси вина с водой и опять доливает в бутылку столько же воды. На третий день он выпивает 3 унции смеси вина с водой и вновь доливает в бутылку столько же воды. Процесс продолжается до тех пор, пока на 16 день Дэвид не опорожняет всю бутылку объемом 16 унций. Сколько всего унций воды выпил Дэвид?
Обычный подход
В задаче вроде этой очень легко утонуть в деталях. Некоторые, наверное, уже составляют таблицу, вносят в нее данные об объеме вина и воды в бутылке каждый день и пытаются вычислить пропорциональные количества той и другой жидкости, выпиваемой Дэвидом каждый день. Задачу легче решить, взглянув на нее с другой точки зрения, а именно, задавшись вопросом, сколько воды Дэвид добавляет в смесь каждый день. Поскольку он в конечном итоге опорожняет бутылку (на 16-й день), и в ней ничего не остается, Дэвид, надо полагать, выпивает всю долитую воду. В первый день он долил 1 унцию воды, во второй — 2 унции, в третий — 3 унции. На 15-й день в бутылку было добавлено 15 унций воды. (Не забывайте, что в 16-й день вода не добавлялась.) Таким образом, количество воды, выпитой Дэвидом, равно 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 унциям.
Образцовое решение
Хотя приведенное выше решение имеет право на существование, можно рассмотреть чуть более простую аналогичную задачу и определить, сколько жидкости Дэвид выпил в целом, а потом просто вычесть из результата объем вина, т. е. 16 унций.
Таким образом, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136, и 136 − 16 = 120.
Дэвид выпил 136 унций жидкости, из которой 120 унций приходилось на воду.
Глава 7
Организация данных
Одной из наиболее важных стратегий является организация данных, хотя, на первый взгляд, это понятно и без слов. Иначе говоря, все должны автоматически упорядочивать данные из условий задачи. В жизни мы делаем это подсознательно каждый день.