Читаем Стратегии решения математических задач полностью

Эту задачу можно решить еще одним способом, если посмотреть на нее с другой точки зрения. Известно, что числа 4 и 3 являются взаимно простыми и представляют количество дней в рабочем цикле каждого молодого человека, соответственно. Их общее кратное, 12, дает дни между датами, в которые они работают вместе. Таким образом, 1 + 12 = 13 — это день, когда молодые люди работают вместе после первого дня, а 13 + 12 = 25 — это день, в который они работают вместе в следующий раз.

Задача 8.5

На местной ярмарке несколько работников занимаются отслеживанием количества людей, принимающих участие в конкретных мероприятиях каждый день. Записи Розалинды показывают, что с понедельника до субботы включительно стенд для стрельбы из лука посетили 510 человек. По подсчетам Габиэля с понедельника по среду включительно на этом стенде побывали 392 человека, а Фрэнк насчитал там во вторник и в пятницу 220 человек. Адель работала в среду, четверг и субботу и у нее получилось в сумме 208 человек. Наконец, в записях Альфреда значилось, что с четверга по субботу включительно на стенде побывали 118 человек. Если предположить, что все эти данные правильны, то сколько человек посетили стенд для стрельбы из лука в понедельник?

Обычный подход

Как правило, начинают составлять ряды уравнений, в которых переменные представляют разные дни недели. В результате получается пять уравнений первой степени с шестью неизвестными. Конечно, не все неизвестные встречаются в каждом уравнении.



Решив эту систему уравнений, можно попытаться найти ответ. Однако этот процесс довольно сложен и большинству не под силу. (Мало кто догадывается, что в результате вычитания уравнений 8.3 и 8.4 из уравнения 8.1 получается Пн. = 82.)

Образцовое решение

Визуализируем условия задачи в виде таблицы посещаемости стенда:



Обратите внимание на то, что за исключением понедельника каждый день упоминается три раза. Это приводит к двойному учету посетителей четырьмя последними учетчиками во все дни кроме понедельника. Таким образом, мы получаем одно уравнение:

2 × 510 − (392 + 220 + 208 + 118) = количество посетителей в понедельник; 1020 − 938 = 82.

В понедельник стенд посетили 82 человека.

Задача 8.6

Аманда, Айан, Сара и Эмили выставили своих лягушек для участия в соревнованиях на дальность прыжка на ярмарке. Лягушка Аманды опередила лягушку Эмили, но оказалась не первой. Лягушка Сары проиграла лягушке Аманды, но была не последней. Как распределились места лягушек?

Обычный подход

Чаще всего берут четыре фишки, жетона или монеты, наклеивают на них стикер с именем владельца и переставляют этих «лягушек» до тех пор, пока результат не будет удовлетворять условиям задачи.

Образцовое решение

Эту задачу проще решить с использованием визуального представления. Прежде всего, мы знаем, что лягушка Аманды опередила лягушку Эмили, но была не первой. Обозначим это схематично так:



Лягушка Сары проиграла лягушке Аманды, но была не последней. Продолжив построение схемы, мы получаем следующее распределение мест:



Схема позволила легко увидеть порядок, в котором распределились места.

Задача 8.7

Из 40 мальчиков в оздоровительном лагере «Кэмп-Уолден» 14 участвовали в заплыве на озере, 13 играли в баскетбол, а 16 ходили в поход. Трое мальчиков играли в баскетбол и участвовали в заплыве. Пять мальчиков участвовали в заплыве и ходили в поход. Восьмеро мальчиков играли в баскетбол и ходили в поход, а двое мальчиков участвовали во всех трех спортивных мероприятиях. Сколько мальчиков в этом лагере не участвовали ни в чем?

Обычный подход

Традиционно эту задачу начинают решать путем сложения всех участников спортивных мероприятий с последующим вычитанием повторов. Такая процедура редко бывает успешной.

Образцовое решение

Попробуем применить для решения задачи визуальное представление. Для наглядного отображения данных используем диаграмму Венна (рис. 8.8).



Область наложения всех трех кругов представляет двоих мальчиков, которые участвовали во всех трех спортивных мероприятиях. Круги показывают следующее:

Участвовали в заплыве = 14;

Играли в баскетбол и ходили в поход = 8;

Участвовали в заплыве и играли в баскетбол = 3;

Играли в баскетбол = 13;

Участвовали в заплыве и ходили в поход = 5;

Ходили в поход = 16.

При сложении этих частей диаграммы Венна мы получаем 8 + 3 + 2 + 1 + 4 + 6 + 5 = 29. В лагере было 40 мальчиков, из которых 29 участвовали в спортивных мероприятиях, а 11 нет.

Задача 8.8

Сколько целых чисел, цифры которых расположены в порядке возрастания, находится между 4000 и 5000?

Обычный подход

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука