Читаем Ткань космоса. Пространство, время и текстура реальности полностью

В первоначальных расчётах, определявших длину струны, предполагалось, что дополнительные измерения столь малы (порядка планковской длины), что гравитация вообще не может уходить в них. В таком случае наблюдаемая нами гравитация мала из-за того, что она действительномала. Но теперь, если мы примем сценарий мира на бране и допустим, что дополнительные измерения гораздо крупнее, чем думалось раньше, то наблюдаемая слабость гравитационного взаимодействия больше не означает, что гравитация в самом деле мала. Гравитация уже может быть относительно мощной силой, кажущейся нам слабой лишь из-за того, что большие дополнительные измерения, подобно крупным трубам, уменьшают её исходную силу, проявляющуюся во всех измерениях, а не только в тех трёх, в которых мы живём. Но тогда, раз уж гравитация может быть гораздо более сильной, чем представлялось раньше, то и струны могут быть гораздо длиннее, чем это предполагалось.

В настоящее время вопрос о возможной длине струн не имеет однозначного ответа. Благодаря обретённой свободе варьировать как размер струн, так и размер дополнительных измерений в гораздо более широком диапазоне, чем это казалось допустимым раньше, появился целый ряд возможностей. Димопулос с сотрудниками показали, что экспериментальные данные из астрофизики и физики элементарных частиц говорят о том, что невозбуждённые струны не могут быть крупнее миллиардной от миллиардной доли метра (10

-18м). Хотя по нашим привычным меркам это чрезвычайно малый размер, но он в сто миллионов миллиардов (10 17
) раз превосходит планковскую длину — т. е. в сто миллионов миллиардов раз больше, чем думали раньше. И как мы сейчас увидим, такого размера уже достаточно, чтобы следы струн могли быть обнаружены на новом поколении ускорителей частиц.

Теория струн сопротивляется экспериментальной проверке?

Возможность того, что мы живём внутри 3-браны, является, конечно, всего лишь возможностью. Как и остаётся только возможностью то, что дополнительные измерения и, следовательно, струны могут быть гораздо крупнее, чем представлялось раньше. Но это чрезвычайно интригующие возможности.

Конечно, даже если и верен сценарий мира на бране, дополнительные измерения и струны всё ещё могут иметь размеры порядка планковской длины. Но фантастична сама возможность того, что в рамках теории струн / M-теории струны и дополнительные измерения могут быть гораздо более крупными, лишь чуть выходя за пределы достижимого современной технологией. Это значит, что есть по крайней мере шанс, что теория струн / M-теория соприкоснётся с миром наблюдаемых явлений и войдёт в разряд экспериментальных наук.

Сколь велик этот шанс? Я не знаю, и никто не знает. Моя интуиция говорит мне, что это маловероятно, но моя интуиция основывается на полутора десятилетиях исследований в рамках традиционной концепции струн и дополнительных измерений порядка планковской длины. Возможно, мои инстинкты притупились. К счастью, вопрос будет решён без оглядки на чью-либо интуицию. Если струны достаточно крупные или некоторые из дополнительных измерений достаточно большие, то результаты грядущих экспериментов будут впечатляющими.

В следующей главе мы рассмотрим целый ряд экспериментов, в которых, среди прочего, будет проверена возможность существования относительно крупных струн и дополнительных измерений, так что пока что я лишь разожгу ваш аппетит. Если струны достигают миллиардной от миллиардной доли метра (10 -18м), то частицы, соответствующие более высоким колебательным модам (рис. 12.4), уже не будут иметь грандиозных масс, превышающих планковскую массу, как в стандартном сценарии. Их массы будут лишь в 100–1000 раз превосходить массу протона, и это уже попадает в предел достижимости построенного недавно в ЦЕРНе Большого адронного коллайдера (Large Hadron Collider — LHC). Если эти колебательные моды струн будут возбуждены в результате высокоэнергетических столкновений, то детекторы ускорителя вспыхнут огнями, как хрустальный шар на Таймс-Сквер в канун Нового года. Будет обнаружен целый букет невиданных ранее частиц, причём их массы будут связаны друг с другом, как различные гармоники одной виолончели. Под полученными данными появится такая размашистая подпись теории струн, которая впечатлила бы даже Джона Хэнкока [83]. Исследователи не смогут пропустить это, даже если забудут надеть свои очки.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже