Читаем Том 1. Механика, излучение и теплота полностью

Как легко проверить простым дифференцированием, первые два члена можно переписать в виде (d/dt)[1/2m(dx/dt)2+1/2mω02x2]. Выражение в квадратных скобках — производная по времени суммы двух членов. Это понятно; ведь первый член суммы — кинетическая энергия движения, а второй — потенциальная энергия пружины. Назовем эту величину запасенной энергией

, т. е. энергией, накопленной при колебаниях. Давайте усредним мощность по многим циклам, когда сила включена уже давно и осциллятор изрядно наколебался. Если пробег длится долго, запасенная энергия не изменяется; производная по времени дает эффект, в среднем равный нулю. Иными словами, если усреднить затраченную за долгое время мощность, то вся энергия поглотится из-за сопротивления, описываемого членом γm(dx/dt)2. Определенную часть энергии осциллятор, конечно, запасет, но если усреднять по многим циклам, то количество ее не будет меняться со временем. Таким образом, средняя мощность

равна

(24.3)

Применяя метод комплексных чисел и нашу теорему о том, что <А2>=1/2A02, легко найти эту среднюю мощность. Так как x

=^xexp(iωt), то dx/dt=iω^xexp(iωt). Следовательно, средняя мощность равна

(24.4)

Если перейти к электрическим цепям, то dx/dt надо заменить на ток I (I — это dq/dt, где q соответствует х

), а mγ — на сопротивление R. Значит, скорость потери энергии (мощности силы) в электрической цепи равна произведению сопротивления на средний квадрат силы тока

(24.5)

Энергия, естественно, переходит в тепло, выделяемое сопротивлением; это так называемые тепловые потери, или джоулево тепло.

Интересно разобраться также в том, много ли энергии может накопить осциллятор. Не путайте этого вопроса с вопросом о средней мощности, ибо хотя выделяемая силой мощность сначала действительно накапливается осциллятором, потом на его долю остается лишь то, что не поглотило трение. В каждый момент осциллятор обладает вполне определенной энергией, поэтому можно вычислить среднюю запасенную энергию . Мы уже вычислили среднее значение (dx/dt)2, так что

(24.6)

Если осциллятор достаточно добротен и частота ω близка к ω0, то |^х| — большая величина, запасенная энергия очень велика и можно накопить очень много энергии за счет небольшой силы. Сила производит большую работу, заставляя осциллятор раскачиваться, но после того, как установилось равновесие, вся сила уходит на борьбу с трением. Осциллятор располагает большой энергией, если трение очень мало, и потери энергии невелики даже при очень большом размахе колебаний. Добротность осциллятора можно измерять величиной запасенной энергии по сравнению с работой, совершенной силой за период колебания.

Что это за величина — накопленная энергия по сравнению с работой силы за цикл? Ее обозначили буквой Q. Величина Q — это умноженное на 2π отношение средней запасенной энергии к работе силы за один цикл (можно рассматривать работу не за цикл, а за радиан, тогда в определении Q исчезнет 2π)

(24.7)

Пока Q не слишком велика — это плохая характеристика системы, если же Q довольно большая величина, то можно сказать, что это мера добротности осциллятора. Многие пытались дать самое простое и полезное определение Q; разные определения немногим отличаются друг от друга, но если Q очень велика, то все они согласуются друг с другом. При самом общем определении по формуле (24.7) Q зависит от ω. Если мы имеем дело с хорошим осциллятором вблизи резонансной частоты, то (24.7) можно упростить, положив ω=ω0, тогда Q0/γ, такое определение Q было дано в предыдущей главе. Что такое Q для электрической цепи? Чтобы найти эту величину, надо заменить m на L, mγ на R и mω02 на 1/С (см. табл. 23.1). Тогда Q в точке резонанса равна Lω/R, где ω — резонансная частота. В цепи с большой Q запасенная цепью энергия велика по сравнению с работой за один цикл, производимой поддерживающей колебания в цепи машиной.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука