Заметим, что квадратный корень не может превысить γ/2; даже если ω0
=0, оба члена равны. Если же ω20 отличается от γ2/4, то квадратный корень меньше γ/2 и выражение в круглых скобках всегда положительно. Это очень хорошо! Почему? Да потому что если бы это выражение было отрицательным, то е пришлось бы возводить в положительную степень и мы получили бы возрастающее со временем решение. Но при увеличении в цепи сопротивления колебания не могут возрастать, значит, мы избегли противоречия. Итак, мы получили два решения; оба решения экспоненциально затухают, но одно из них стремится «умереть» гораздо скорее. Общее решение, конечно, представляет собой комбинацию обоих решений, а значения коэффициентов А и В зависят от того, как начинаются колебания, каковы начальные условия. В нашей цепи случилось так, что А — отрицательное число, а В — положительное, поэтому на экране осциллоскопа мы увидели разность двух экспонент.Давайте обсудим, как найти коэффициенты А
и В (или А и A*), если известны начальные условия. Предположим, что в момент t=0 нам известны смещение х=х0 и скорость dx/dt=v0. Если в соотношения
подставить значения t=0, х
=х0, dx/dt=v0 и воспользоваться тем, что е0=еi0=1, то мы получим
где A
=AR+iAI, A*=AR — iAI. Значит, (24.21)
Таким образом, зная начальные условия, мы полностью определили А
и А*, а значит, и кривую переходного решения. Можно записать решение и по-другому. Вспомним, что
тогда
(24.22)
где ωγ=+√(ω2
0-(γ2/4). Мы получили формулу затухающих колебаний. Такая формула нам не понадобится, однако отметим ее особенности, справедливые и в более общих случаях.Прежде всего поведение системы, на которую не действует внешняя сила, описывается суммой (суперпозицией) временных экспонент [мы записали их в виде exp(iαt)]. Такое решение хорошо передает истинное положение вещей. В общем случае α — это комплексное число, и его мнимая часть соответствует затуханию колебаний. Наконец, тесная математическая связь синусоидальных и экспоненциальных функций, о которой говорилось в гл. 22, физически часто проявляется в переходе от колебаний к чисто экспоненциальному затуханию при критических значениях некоторых параметров системы (в нашем случае это было сопротивление γ).
Глава 25 ЛИНЕЙНЫЕ СИСТЕМЫ И ОБЗОР
§ 1. Линейные дифференциальные уравнения
В этой главе мы снова вернемся к некоторым аспектам наших колебательных систем, только постараемся теперь увидеть нечто более общее, стоящее за спиной каждой частной системы. Изучение каждой колебательной системы сводилось к решению дифференциального уравнения
(25.1)
Эта комбинация «операций» над переменной х
обладает интересным свойством: если вместо х подставить (х+у), получится сумма одинаковых операций над х и y, а умножение х на число а сводится к умножению на это число первоначальной комбинации. Это легко доказать. Чтобы не переутомиться, записывая все буквы, вошедшие в (25.1), давайте введем «скорописные» обозначения. Обозначим всю левую часть уравнения (25.1) символом _L(х). Увидев такой символ, вы должны мысленно представить себе левую часть уравнения (25.1). Поэтому, согласно этой системе, символ _L(x+y) будет означать следующее: (25.2)
(Подчеркнем букву _L
, чтобы не спутать этот символ с обычной функцией.) Иногда мы будем употреблять термин операторная запись, но совершенно безразлично, какими словами это называть, просто-напросто это «скоропись». Наше первое утверждение, что (25.3)
следует из соотношений а
(х+у)=ах+ау, d(x+y)/dt=dx/dt+-dy/dt и т. д.Легко доказать, что для постоянного а
(25.4)
[Соотношения (25.3) и (25.4) тесно связаны одно с другим, потому что, подставив в (25.3) х
+х, мы получим (25.4) для частного значения а=2 и т. д.]Решая более сложные задачи, можно получить _L
, в котором содержится больше членов и более высокие производные. Обычно первым делом интересуются, справедливы ли соотношения (25.3) и (25.4). Если они выполняются, то задачу называют линейной. В этой главе мы изучим некоторые свойства систем, следующие только из того факта, что система линейная. Это поможет нам понять общность некоторых свойств изученных ранее частных систем.Давайте изучим некоторые свойства линейных дифференциальных уравнений, причем полезно помнить о хорошо знакомом нам частном уравнении (25.1). Первое интересное свойство: предположим, что мы решаем дифференциальное уравнение для переходных движений: свободных колебаний без действия внешних сил. Нам предстоит решить уравнение
(25.5)