Читаем Том 1. Механика, излучение и теплота полностью

Это уравнение решается при помощи эллиптических функций, но легче его решить численно, как мы это делали в гл. 9 (вып. 1) при изучении ньютоновых законов движения. Большинство нелинейных уравнений вообще можно решить лишь численно. Для малых углов sinθ практически равен θ, и в этом случае можно перейти к линейному уравнению. На этом примере можно сообразить, что есть много обстоятельств, при которых малые эффекты линейны (здесь это отклонения маятника на малые углы). Другой пример: если на пружине качается небольшой грузик, сила пропорциональна растяжению пружины. Если сильно потянуть за пружину, она может и порваться, значит, в этом случае сила совсем иначе зависит от расстояния! Линейные уравнения очень важны. Они настолько важны, что физики и инженеры, пожалуй, половину своего времени тратят на решение линейных уравнений.

§ 3. Колебания в линейных системах

Давайте вспомним, о чем мы говорили в нескольких последних главах. Физику колебательных движений очень легко затемнить математикой. На самом-то деле здесь физика очень проста, и если на минуту забыть математику, то мы увидим, что понимаем почти все, что происходит в колебательной системе. Во-первых, если мы имеем дело только с пружинкой и грузиком, то легко понять, почему система колеблется — это следствие инерции. Мы оттянули массу вниз, а сила тянет ее назад; наступает момент, когда сила равна нулю, но грузик не может остановиться мгновенно: у него есть импульс, который заставляет его двигаться. Теперь пружинка тянет грузик в другую сторону, грузик начинает двигаться взад и вперед. Итак, если бы не было трения, то, несомненно, получилось бы колебательное движение, и так оно и есть на самом деле. Но достаточно незначительного трения, чтобы размах следующих колебаний стал меньше, чем раньше.

Что случится потом, после многих циклов? Это зависит от характера и величины трения. Предположим, что мы придумали такое устройство, что при изменении амплитуды сила трения оказывается пропорциональной другим силам — инерции и натяжению. Иначе говоря, при малых колебаниях трение слабее, чем при колебаниях с большой амплитудой. Обычно сила трения таким свойством не обладает, так что можно предположить, что в нашем случае действуют силы трения особого рода — силы, пропорциональные скорости; тогда для больших колебаний эти силы будут больше, а для малых — меньше. Если у нас именно такой вид трения, то в конце каждого цикла система будет находиться в тех же условиях, что и в начале цикла, только всего будет меньше. Все силы будут меньше в тех же пропорциях: сила пружинки немного ослабнет, инерциальные эффекты будут меньше. Ведь теперь и ускорения грузика будут меньше, и сила трения ослабеет (об этом мы позаботились, создавая наше устройство). Если бы мы имели дело с такими силами трения, то увидели бы, что каждое колебание в точности повторяет первое, только амплитуда его стала меньше. Если после первого цикла амплитуда составляла, например, 90% первоначальной, то после второго цикла она будет равна 90% от 90% и т. д., т. е. размах колебаний после каждого цикла уменьшается в одинаковое число раз. Кривая, ведущая себя таким образом,— это экспоненциальная функция. Она изменяется в одинаковое число раз на любых интервалах одинаковой длины. Иначе говоря, если отношение амплитуды одного цикла к амплитуде предыдущего равно а, то такое же отношение для второго цикла равно а2

, затем а3 и т. д. Таким образом, амплитуда колебаний после n циклов равна

(25.10)

Но, конечно, n~

t, поэтому общее решение будет произведением какой-нибудь периодической функции sinωt или соsωt на амплитуду, которая ведет себя примерно как bt. Если b положительно и меньше единицы, то его можно записать в виде е-c
.

Вот почему решение задачи о колебаниях при учете трения будет выглядеть примерно как exp(-ct)cosωt. Это очень просто.

Что случится, если трение не будет таким искусственным; например обычное трение о стол, когда сила трения постоянна по величине, не зависит от размаха колебаний и меняет свое направление каждые полпериода? Тогда уравнения движения станут нелинейными; решить их трудно, поэтому придется прибегнуть к описанному в гл. 2 численному решению или рассматривать по отдельности каждую половину периода. Самым мощным, конечно, является численный метод; с его помощью можно решить любое уравнение. Математический анализ используется лишь для решения простых задач.

Надо сказать, что математический анализ вообще не такое уж могучее средство исследования; с его помощью можно решить лишь простейшие возможные уравнения. Как только уравнение чуть усложняется, его уже нельзя решить аналитически. Численный же метод, с которым мы познакомились в начале курса, позволяет решить любое уравнение, представляющее физический интерес.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука