Пойдем дальше. Что можно сказать о резонансной кривой? Как объяснить резонанс? Представим сначала, что трения нет и мы имеем дело с чем-то, что может колебаться само по себе. Если подталкивать маятник каждый раз, когда он пройдет мимо нас, то очень скоро маятник начнет раскачиваться, как сумасшедший. А что случится, если мы закроем глаза и, не следя за маятником, начнем толкать его с произвольной частотой, с какой захотим? Иногда наши толчки, попадая не в ритм, будут замедлять маятник. Но когда нам посчастливится найти верный темп, каждый толчок будет достигать маятника в нужный момент и он будет подниматься все выше, выше и выше. Таким образом, если не будет трения, то для зависимости амплитуды от частоты внешней силы мы получим кривую, которая выглядит, как сплошная линия на фиг. 25.5.
Качественно мы поняли резонансную кривую; чтобы найти ее точные очертания, пожалуй, придется прибегнуть к помощи математики. Кривая стремится к бесконечности, если ω→ω0
, где ω0— собственная частота осциллятора.Предположите, что существует слабое трение. Тогда при незначительных отклонениях осциллятора влияние трения сказывается слабо и резонансная кривая вдали от максимума не изменяется. Однако около резонанса кривая уже не уходит в бесконечность, а просто поднимается выше, чем в остальных местах. Когда амплитуда колебаний достигает максимума, работа, совершенная нами в момент толчка, полностью компенсирует потери энергии на трение за период. Таким образом, вершина кривой закруглена, и она уже не уходит в бесконечность. Чем больше трение, тем больше сглажена вершина кривой. Кто-нибудь может сказать: «Я думал, что ширины резонансных кривых зависят от трения». Так можно подумать, потому что резонансные кривые рисуют, принимая за единицу масштаба вершину кривой. Однако если нарисовать все кривые в одном масштабе (это прояснит дело больше, чем изучение математических выражений), то окажется, что трение срезает вершину кривой! Если трение мало, мы можем подняться высоко по резонансной кривой; когда трение сгладит кривую, мы на том же интервале частот поднимаемся на меньшую высоту, и это создает ощущение ширины. Таким образом, чем выше пик кривой, тем ближе к максимуму точки, где высота кривой равна половине максимума.
Наконец, подумаем, что произойдет при очень большом трении. Ясно, что, если трение очень велико, система вообще не осциллирует. Энергии пружинки едва-едва хватит на борьбу с силами трения, и грузик будет медленно ползти к положению равновесия.
§ 4. Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналогичные механическим системам. Мы не старались до конца выяснить,
Возьмем для примера простейшее устройство. Приложим к куску проволоки (сопротивлению) разность потенциалов
Коэффициент
Нас интересует, много ли совершается работы за 1