У механических устройств есть, конечно, и другие интересные свойства, например, такие, как масса (инерция). В электрических цепях, оказывается, тоже существуют аналоги инерции. Можно построить прибор, называемый индуктором
, а свойство, которым он обладает, носит название индуктивность. Ток, попадающий в такой прибор, не хочет останавливаться. Чтобы изменить ток, к этому прибору нужно приложить разность потенциалов. Если по прибору течет постоянный ток, то падения потенциалов нет. Цепи с постоянным током ничего «не знают» об индуктивности; эффекты индуктивности обнаруживаются только при изменениях тока. Описывающее эти эффекты уравнение гласит; (25.12)
а индуктивность измеряется в единицах, которые называются генри
(гн). Приложенная к прибору с индуктивностью в 1 гн разность потенциалов в 1 в изменяет ток на 1 а/сек. Уравнение (25.12), если хотите,— электрический аналог закона Ньютона: V соответствует F, L соответствует m, а I — скорости!Все последующие уравнения, описывающие обе системы, выводятся одинаково, потому что мы просто можем заменить буквы в уравнении для одной системы и получить уравнение для другой системы; любой вывод, сделанный при изучении одной системы, будет верен и для другой системы.
Какое электрическое устройство соответствует пружинке, в которой сила пропорциональна растяжению? Если начать с F
=kx и заменить F на V, а х на q, то получим V=αq.Мы уже знаем, что такое устройство существует; более того, это единственный из трех элементов цепи, работу которого мы понимаем. Мы уже знакомились с парой параллельных пластинок и обнаружили, что если зарядить пластинки равными, но противоположными по знаку зарядами, то поле между пластинками будет пропорционально величине заряда. Работа, совершаемая при переносе единичного заряда через щель от одной пластинки к другой, прямо пропорциональна заряду пластинок. Эта работа служит определением разности потенциалов и равна линейному интегралу электрического поля от одной пластинки к другой. По исторически сложившимся причинам постоянную пропорциональности называют не С, а 1/С, т. е. (25.13)
Единица емкости называется фарадой
(ф); заряд в 1 кулон, помещенный на каждой пластинке конденсатора емкостью в 1 ф, создает разность потенциалов в 1 в. Вот все нужные аналогии. Теперь можно, заменив m на L, q на х и т. д., написать уравнение для резонансной цепи (25.14)
(25.15)
Все, что мы знаем об уравнении (25.14), можно применить и к уравнению (25.15). Переносится каждое следствие
; аналогов так много, что с их помощью можно сделать замечательные вещи.Предположим, что мы натолкнулись на очень сложную механическую систему: имеется не одна масса на пружинке, а много масс на многих пружинках, и все это перепутано. Что нам делать? Решать уравнения? Можно и так. Но попробуем собрать электрическую
цепь, которая будет описываться теми же уравнениями, что и механическое устройство! Если мы собрались анализировать движение массы на пружинке, почему бы нам не собрать цепь, в которой индуктивность пропорциональна массе, сопротивление пропорционально γm, 1/С пропорционально k? Тогда электрическая цепь, конечно, будет точным аналогом механического устройства в том смысле, что любой отклик q на V (V соответствует действующей силе) в точности соответствует отклику х на силу! Перепутав в цепи великое множество сопротивлений, индуктивностей и емкостей, можно получить цепь, имитирующую сложнейшую механическую систему. Что в этом хорошего? Каждая задача, механическая или электрическая, столь же трудна (или легка), как и другая: ведь они в точности эквивалентны. Открытие электричества не помогло решить математические уравнения, но дело в том, что всегда легче собрать электрическую цепь и изменять ее параметры.