Читаем Том 1. Механика, излучение и теплота полностью

§ 5. Математическое описание интерференции

Мы рассматривали излучение диполей с качественной точки зрения, теперь рассмотрим количественную картину. Найдем прежде всего суммарное поле от двух источников в самом общем случае, когда разность фаз α и силы осцилляторов A1 и A2 произвольны; для этого необходимо сложить два косинуса с одинаковой частотой, но разными фазами. Разность фаз находится весьма просто: она складывается из разности, возникающей за счет неодинакового удаления точки наблюдения от обоих источников, и внутренней, заданной разности фаз колебаний. Выражаясь математически, нам необходимо сложить две волны: R=A1cost1)+А2cost2). Как это сделать?

Каждый, вероятно, сумеет провести это сложение, но тем не менее проследим за ходом вычислений. Прежде всего, если мы разбираемся в математике и достаточно ловко управляемся с синусами и косинусами, эту задачу легко решить. Самый простой случай, когда амплитуда A1 равна А2, и пусть обе они обозначаются через А. В этих условиях (назовем это тригонометрическим методом решения задачи) мы имеем

(29.9)

На уроках тригонометрии вы, вероятно, доказывали равенство

(29.10)

Если это нам известно, то мы немедленно получаем R:

(29.11)

Итак, мы снова получили синусоидальную волну, но с новой фазой и новой амплитудой. Вообще результат сложения двух синусоидальных волн есть синусоидальная волна с новой амплитудой AR, называемой результирующей амплитудой, и новой фазой φR, называемой результирующей фазой. В нашем частном случае результирующая амплитуда равна

(29.12)

а результирующая фаза есть арифметическое среднее обеих фаз. Таким образом, поставленная задача полностью решена. Предположим теперь, что мы забыли формулу сложения косинусов. Тогда можно применить другой метод решения — геометрический. Косинус, зависящий от ωt, можно представить в виде горизонтальной проекции некоторого вращающегося вектора

. Пусть имеется вектор А1, вращающийся с течением времени; длина его равна A1, а угол с осью абсцисс равен ωt+φ1. (Мы пока опустим слагаемое ωt; как мы увидим, при выводе это не играет роли.) Сделаем моментальный снимок векторов в момент времени t=0, помня, что на самом деле вся схема вращается с угловой скоростью ω (фиг. 29.9).

Фиг. 29.9. Геометрический способ сложения двух косинусоидальных волн. Чертеж вращается со скоростью ω против часовой стрелки.


Проекция A1 на ось абсцисс в точности равна A1cos(ωt+φ1). В момент времени t=0 вторая волна представляется вектором A2, длина которого равна A2, а его угол с осью абсцисс равен φ2, причем он тоже вращается с течением времени. Оба вектора вращаются с одинаковой угловой скоростью ω, и их относительное расположение неизменно. Вся система вращается жестко, подобно твердому телу.

Горизонтальная проекция А2 равна A2

cost2). Из векторного анализа известно, что при сложении двух векторов по правилу параллелограмма образуется новый, результирующий вектор АR, причем x-компонента его есть сумма х-компонент слагающих векторов. Отсюда получаем решение нашей задачи. Легко проверить, что получается правильный ответ в нашем частном случае A1=А2=А. Действительно, из фиг. 29.9 очевидно, что AR лежит посредине между A1 и А2 и составляет угол 1/2(φ21) с каждым из них. Следовательно, AR=2Аcos1/221
), что совпадает с прежним результатом. Кроме того, в случае А1-А2 фаза AR есть среднее от фаз A1 и А2. Для неравных A1 и А2 задача решается столь же просто. Мы можем назвать это геометрическим решением задачи.

Существует еще один метод решения задачи, его можно было бы назвать аналитическим. Вместо того чтобы рисовать схему, подобную приведенной на фиг. 29.9, напишем выражения, имеющие тот же смысл, что и чертеж, и сопоставим каждому вектору комплексное число. Действительные части этих комплексных чисел отвечают реальным физическим величинам. В нашем конкретном случае волны записываются следующим образом: A1ехр[i(ωt+φ1)] [действительная часть этого равна A1cos(ωt+φ1)] и A2

ехр[i(ωt-+φ2)]. Сложим обе волны:

(29.13)

или

(29.14)

Задача, таким образом, решена, так как мы имеем окончательный результат в виде комплексного числа с модулем AR и фазой φR.

Для иллюстрации аналитического метода найдем амплитуду АR, т. е. «длину» R. «Длина» комплексного числа в квадрате есть само комплексное число, умноженное на сопряженное ему.

Комплексное сопряжение состоит в изменении знака i. Отсюда получаем

(29.15)

Перемножая, получаем A12+A22 и перекрестные члены

Далее

т. e. eiθ+e-iθ=2cosθ. Следовательно, окончательный результат есть

(29.16)

(С помощью формул тригонометрии легко установить совпадение получаемого результата с длиной AR на фиг. 29.9.)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука