Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть
Таким образом, суммарная интенсивность оказывается равной
Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n=1, получим, как и следовало ожидать, I=I0
. Проверим формулу для n=2: с помощью соотношения sinφ=2sin φ/2cosφ/2 сразу находимМы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и φ, близких к нулю. Прежде всего, когда φ точно равно нулю, мы получаем отношение 0/0, но фактически для бесконечно малых φ отношение синусов равно n2
, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2 раз больше интенсивности одного осциллятора. Этот результат легко понять, поскольку при нулевой разности фаз всеС ростом фазы φ отношение двух синусов падает и обращается в нуль в первый раз при nφ/2=π, поскольку sinπ=0. Другими словами, значение φ=2π/
Перейдем к следующему максимуму и покажем, что он действительно, как мы и ждали, много меньше первого. Для точного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с изменением φ. Мы не станем этого делать, поскольку при большом n sinφ/2 меняется медленнее sinφ/2 и условие sinφ/2=1 дает положение максимума с большой точностью. Максимум sin2
nφ/2 достигается при nφ/2=Зπ/2 или φ=Зπ/n. Это означает, что стрелки векторов описывают полторы окружности.Подставляя φ=3π/n, получаем sin2
3π/2=1 в числителе (30.3) (с этой целью и был выбран угол φ) и sin23n/2n в знаменателе. Для достаточно большогоМожно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2πnI0
и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной линии, как показано на фиг. 30.3.
Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источниками выбран равным α. Тогда для лучей, распространяющихся в заданном направлении θ, отсчитываемом от нормали, вследствие разности хода лучей от двух соседних источников возникает дополнительный сдвиг фазы 2πd(1/λ)sinθ. Таким образом,
Рассмотрим сначала случай α=0. Все осцилляторы колеблются с одной фазой; требуется найти интенсивность их излучения как функцию угла θ. Подставим с этой целью φ=