Читаем Том 1. Механика, излучение и теплота полностью

Фиг. 30.1. Результирующая амплитуда шести аквидистантных источников при разности фаз φ между каждыми двумя соседними источниками.


Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе φ (поскольку радиус QS образует с А2 такой же угол, как QO с A1

). Следовательно, радиус r должен удовлетворять равенству А=2rsinφ/2, откуда мы и находим величину r. Далее, большой угол OQT равен nφ; следовательно, AR=2rsinnφ/2. Исключая из обоих равенств r, получаем

(30.2)

Таким образом, суммарная интенсивность оказывается равной

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n=1, получим, как и следовало ожидать, I=I0

. Проверим формулу для n=2: с помощью соотношения sinφ=2sin φ/2cosφ/2 сразу находим АR=2Acosφ/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и φ, близких к нулю. Прежде всего, когда φ точно равно нулю, мы получаем отношение 0/0, но фактически для бесконечно малых φ отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2 раз больше интенсивности одного осциллятора. Этот результат легко понять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исходного, а интенсивность увеличивается в n2 раз.

С ростом фазы φ отношение двух синусов падает и обращается в нуль в первый раз при nφ/2=π, поскольку sinπ=0. Другими словами, значение φ=2π/n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов возвращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2π.

Перейдем к следующему максимуму и покажем, что он действительно, как мы и ждали, много меньше первого. Для точного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с изменением φ. Мы не станем этого делать, поскольку при большом n sinφ/2 меняется медленнее sinφ/2 и условие sinφ/2=1 дает положение максимума с большой точностью. Максимум sin2nφ/2 достигается при nφ/2=Зπ/2 или φ=Зπ/n. Это означает, что стрелки векторов описывают полторы окружности.

Подставляя φ=3π/n, получаем sin2

3π/2=1 в числителе (30.3) (с этой целью и был выбран угол φ) и sin23n/2n в знаменателе. Для достаточно большого n можно заменить синус его аргументом: sin 3π/2n=3π/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I0(4n2/9π2). Но n2I0 — не что иное, как интенсивность в первом максимуме, т. е. интенсивность второго максимума получается равной 4/9π2 от максимальной, что составляет 0,047, или меньше 5%! Остальные максимумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2πnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Фиг. 30.2. Зависимость интенсивности от фазового угла для большого числа осцилляторов с одинаковыми амплитудами.


Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной линии, как показано на фиг. 30.3.

Фиг. 30.3. Устройство из n одинаковых осцилляторов, расположенных на линии. Фаза колебания s-го осциллятора равна as=sa.


Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источниками выбран равным α. Тогда для лучей, распространяющихся в заданном направлении θ, отсчитываемом от нормали, вследствие разности хода лучей от двух соседних источников возникает дополнительный сдвиг фазы 2πd(1/λ)sinθ. Таким образом,

(30.4)

Рассмотрим сначала случай α=0. Все осцилляторы колеблются с одной фазой; требуется найти интенсивность их излучения как функцию угла θ. Подставим с этой целью φ=kdsinθ в формулу (30.3) и посмотрим, что получится в результате. Прежде всего при φ=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направлении θ=0. Интересно узнать, где находится первый минимум.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука