Вторая поправка к нашей формуле возникает потому, что каждый атом обычно имеет несколько резонансных частот. Тогда вместо одного вида осцилляторов, нужно учесть действие нескольких осцилляторов с разными резонансными частотами, колебания которых происходят независимо друг от друга, и сложить вклады от всех осцилляторов.
Пусть в единице объема содержится Nk
электронов с собственной частотой (ωk и коэффициентом затухания γk. Наша дисперсионная формула примет в результате видЭто окончательное выражение для показателя преломления справедливо для большого числа веществ[23]
. Примерный ход показателя преломления с частотой, даваемый формулой (31.20), приведен на фиг. 31.5.Вы видите, что всюду, за исключением области, где ω очень близко к одной из резонансных частот, наклон кривой положителен. Такая зависимость носит название «нормальной» дисперсии (потому что этот случай встречается наиболее часто). Вблизи резонансных частот кривая имеет отрицательный наклон, и в этом случае говорят об «аномальной» дисперсии (имея в виду «ненормальную» дисперсию), потому что она была наблюдена задолго до того, как узнали об электронах, и казалась в то время необычной. С нашей точки зрения, оба наклона вполне «нормальны»!
§ 4 Поглощение
Вы уже, наверное, заметили нечто странное в последней форме (31.20) нашей дисперсионной формулы. Из-за члена iγ, учитывающего затухание, показатель преломления стал комплексной величиной! Что это означает? Выразим n через действительную и мнимую части:
причем n' и n" вещественны. (Перед in" стоит знак минус, а само n", как легко убедиться, положительно.)
Смысл комплексного показателя преломления легче всего понять, вернувшись к уравнению (31.6) для волны, проходящей сквозь пластинку с показателем преломления n. Подставив сюда комплексное n и произведя перегруппировку членов, получаем
Множители, обозначенные буквой В, имеют прежний вид и, как и раньше, описывают волну, фаза которой после прохождения пластинки запаздывает на угол ω(
Заметим также, что появление мнимой части n отклоняет стрелку, изображающую Еа
на фиг. 31.3, к началу координат.Отсюда ясно, почему поле ослабевает при прохождении через среду.
Обычно (как, например, у стекла) поглощение света очень мало. Именно так и получается по нашей формуле (31.20), потому что мнимая часть знаменателя iγk
ω много меньше действительной части (ωk2-ω2). Однако когда частота ω близка к ωk, резонансный член (ωk2-ω2) оказывается мал по сравнению с iγkω и показатель преломления становится почти чисто мнимым. Поглощение в этом случае определяет основной эффект. Именно поглощение дает в солнечном спектре темные линии. Свет, излучаемый поверхностью Солнца, проходит сквозь солнечную атмосферу (а также через атмосферу Земли), и частоты, равные резонансным частотам атомов в атмосфере Солнца, сильно поглощаются.Наблюдение подобных спектральных линий солнечного света позволяет установить резонансные частоты атомов, а следовательно, и химический состав солнечной атмосферы. Точно так же по спектру звезд узнают состав звездного вещества. С помощью этих методов обнаружили, что химические элементы на Солнце и звездах не отличаются от земных.
§ 5. Энергия световой волны
Как мы видели, мнимая часть показателя преломления характеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия световой волны пропорциональна —
Е2, среднему по времени от квадрата электрического поля волны. Ослабление электрического поля за счет поглощения волны должно приводить к потере энергии, переходящей в какое-то трение электронов и в конечном счете, как нетрудно догадаться, в тепло.Взяв часть световой волны, падающую на единичную площадку, например на квадратный сантиметр поверхности нашей пластинки на фиг. 31.1, можно записать энергетический баланс в следующей форме (мы предполагаем, что энергия сохраняется!):