Таким образом, алгоритм использует довольно сложную модель человеческого зрения. Для обнаружения в детекторе может быть использовано как вычисление корреляционной функции, так и визуальное сравнение.
6.2. Стеганографические методы на основе квантования
6.2.1. Принципы встраивания информации с использованием квантования. Дизеризованные квантователи
Под квантованием понимается процесс сопоставления большого (возможно и бесконечного) множества значений с некоторым конечным множеством чисел. Понятно, что при этом происходит уменьшение объема информации за счет ее искажения. Квантование находит применение в алгоритмах сжатия с потерями. Различают скалярное и векторное квантование. При векторном квантовании, в отличии от скалярного, происходит отображение не отдельно взятого отсчета, а их совокупности (вектора). Из теории информации известно, что векторное квантование эффективнее скалярного по степени сжатия, обладая большей сложностью. В стеганографии находят применение оба вида квантования.
В кодере квантователя вся область значений исходного множества делится на интервалы, и в каждом интервале выбирается число его представляющее. Это число есть кодовое слово квантователя и обычно бывает центроидом интервала квантования. Множество кодовых слов называется книгой квантователя. Все значения, попавшие в данный интервал, заменяются в кодере на соответствующее кодовое слово. В декодере принятому числу сопоставляется некоторое значение. Интервал квантования обычно называют шагом квантователя.
Встраивание информации с применением квантования относится к нелинейным методам. В работе [41] было показано, как может быть построена подобная «слепая» стегосистема, пропускная способность которой эквивалентна пропускной способности стегосистемы, имеющей на приеме исходный сигнал. При этом делается предположение о гауссовском характере исходного сигнала.
Модель стегосистемы, не требующей наличия исходного сигнала в декодере представлена на рис. 6.3.
Рис. 6.3 Модель «слепой» стегосистемы
Передаваемое сообщение
Как было показано в главе 5, наиболее предпочтительно внедрение информации в спектральную область изображения. Если при этом используются линейные методы, то встраивание ЦВЗ производят в средние полосы частот. Это объясняется тем, что энергия изображения сосредоточена, в основном, в низкочастотной (НЧ) области. Следовательно, в детекторе ЦВЗ в этой области наблюдается сильный шум самого сигнала. В высокочастотных (ВЧ) областях большую величину имеет шум обработки, например, сжатия. В отличие от линейных, нелинейные схемы встраивания информации могут использовать НЧ области, так как мощность внедряемого ЦВЗ не зависит от амплитуды коэффициентов. Это объясняется тем, что в нелинейных алгоритмах скрытия не используется корреляционный детектор, коэффициенты малой и большой амплитуды обрабатываются одинаково.
Итак, как показано на рис. 6.3, внедряемый ЦВЗ
— каждая из них должна быть близка, визуально неотличима от
— точки одной функции должны находиться на достаточном расстоянии от точек другой функции, чтобы обеспечить возможность робастного детектирования ЦВЗ.
В качестве таких функций может выступать семейство квантователей. Число всевозможных
В работе [38, 39] рассматривается применение в схеме МИК так называемого дизеризованного квантователя. Дизеризация заключается в том, что перед квантованием к сигналу добавляется некоторое число