Читаем Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир полностью

138. Классический алгоритм для задач нахождения кратчайшего пути разработан Эдсгером Дейкстрой. За информацией обращайтесь по адресу http://en.wikipedia.org/wiki/Dijkstra’s_algorithm. Стивен Скиена разместил в своем блоге анимированную инструкцию алгоритма Дейкстры, см. http://www.cs.sunysb.edu/~skiena/combinatorica/animations/dijkstra.html.

139. Восхитительные примеры историй в шести словах даны на страницах http://www.smithmag.net/sixwords/; http://en.wikipedia.org/wiki/Six-Word_Memoirs.

29. Анализируй это!

140. Анализ возник в связи с необходимостью укрепить логические основы исчисления. Уильям Данхэм прослеживает его историю на основе работ одиннадцати гениальных математиков, от Ньютона до Лебега, в книге W. Dunham, The Calculus Gallery (Princeton University Press, 2005). Эта книга содержит точные математические представления, которые будут понятны читателям уровня выпускников колледжа. См. также учебник, написанный в аналогичной манере, D. Bressoud, A Radical Approach to Real Analysis, 2nd edition (Mathematical Association of America, 2006). Для более полного исторического обзора см. C. B. Boyer, The History of the Calculus and Its Conceptual Development (Dover, 1959).

141. Об истории ряда Гранди 1 – 1 + 1 – 1 + 1 – 1 + ... его дальнейшем математическом статусе и его роли в математическом образовании говорится в статье «Википедии», опирающейся на тщательно отобранные источники, со ссылками по темам. Все это можно найти на странице Grandi’s series («Ряды Гранди») по адресу http://en.wikipedia.org/wiki/Grandi’s_series.

142. Для получения четкого представления о теореме Римана см. Dunham, The Calculus Gallery, рр. 112–115.

143. Если знакочередующийся ряд сходится условно, это означает, что он сходится, но не абсолютно (сумма абсолютных значений его членов не сходится). Для рядов, подобных гармоническому, можно изменять порядок членов, чтобы получить любое действительное число. Таковы шокирующие следствия теоремы Римана о перестановке членов условно сходящегося ряда. Поэтому сумма сходящегося ряда, если он не сходится абсолютно,

может не соответствовать нашим интуитивным ожиданиям.

В случае абсолютно сходящегося ряда все перестановки ряда сходятся к одному значению. Что удивительно удобно. Это означает, что абсолютно сходящийся ряд ведет себя как конечная сумма. В частности, он подчиняется коммутативному закону сложения. Вы можете переставить члены ряда, как вам захочется, и получите тот же ответ. Более подробно о сходимости рядов, см. http://mathworld.wolfram.com/AbsoluteConvergence.html и http://en.wikipedia.org/wiki/Absolute_convergence.

Прим. ред.: Простая книга о сходимости рядов: Воробьев Н. Н. Теория рядов. М. : Наука, 1986.

144. Выдающаяся книга Tom Korner’s Fourier Analysis (Cambridge University Press, 1989) представляется как «витрина магазина» идей, методов, приложений и истории анализа Фурье. Уровень математической строгости высок, хотя книга остроумная, элегантная и приятно занимательная. Для получения представления о работе Фурье и ее связи с музыкой см. M. Kline, Mathematics in Western Culture (Oxford University Press, 1974), chapter 19.

Прим. ред.: Литература по анализу Фурье и рядам Фурье: Толстов Г. П. Ряды Фурье. М. : Наука, 1980; Эдвардс Р. Ряды Фурье в современном изложении: в 2 т. М. : Мир, 1985.

145. Феномен Гиббса и его нелегкая история рассматриваются в книге E. Hewitt and R. E. Hewitt, The Gibbs-Wilbraham phenomenon: An episode in Fourier analysis, Archive for the History of Exact Sciences, Vol. 21 (1979), pp. 129–160.

146. Как феномен Гиббса может повлиять на MPEG и JPEG технологии сжатия цифрового видео, см. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/sab/report.html.

В MРТ-сканировании эффект Гиббса называется усеченным сигналом Гиббса: http://www.mr-tip.com/serv1.php?type=art⊂=Gibbs%20Artifact. Методы для работы с этим артефактом см. T. B. Smith and K. S. Nayak, MRI artifacts and correction strategies, Imaging Medicine, Vol. 2, № 4 (2010), рр. 445–457, доступно на http://mrel.usc.edu/pdf/Smith_IM_2010.pdf.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука