Работа Хаббарда была одной из первых вылазок в область науки, ныне называемой
9. Ванна моя преисполнена[11]
Дядюшка Ирв был братом моего отца и его компаньоном. Они владели обувным магазином в нашем городе. Так вот, он хорошо разбирался в практической стороне вещей и по большей части находился наверху в своем кабинете, потому что лучше управлялся с цифрами, чем с клиентами.
Когда мне было лет десять или одиннадцать лет, дядя Ирв задал мне мою первую арифметическую задачу34. Этот день навсегда врезался мне в память, вероятно, потому, что я ошибся и чувствовал смущение.
В условии задачи говорилось о заполнении ванны водой35. Если включить кран с холодной водой, то ванна наполнится за полчаса, а если с горячей — то за час. Сколько времени потребуется, чтобы заполнить ванну, когда включены оба крана?
Я уверенно, вероятно, как и многие из вас, ответил: «Сорок пять минут». Дядюшка Ирв покачал головой и усмехнулся. И своим высоким гнусавым голосом он преподал мне урок.
«Стивен, — обратился ко мне он, — скажи, сколько воды будет в ванне через минуту». Холодная вода заполняет ванну за 30 минут, так что за одну минуту она заполнит
Чтобы сложить эти дроби, обратите внимание, что наименьший общий знаменатель равен 60. Преобразовав
Это означает, что вода из двух кранов за минуту заполнила
С тех пор на протяжении многих лет я неоднократно вспоминал о той ванне, причем всегда с любовью к дядюшке Ирву и самой задаче. Мне преподали урок, как просто ради удовольствия решать задачи, основываясь на интуиции, и как найти приближенное решение, если сложно отыскать точное.
Рассмотрим мое первоначальное предположение — 45 минут — и, решив задачу интуитивно (в соответствии со здравым смыслом), поймем, что этот ответ не может быть правильным. Действительно, он абсурден. Чтобы понять почему, предположим, что горячая вода отключена, тогда холодная вода заполнит ванну за 30 минут. Поэтому какой бы дядюшка Ирв ни задал вопрос, ответ должен быть «меньше 30 минут»; если в ванну льется не только холодная, но и горячая вода, то ванна заполнится быстрее.
Правда, этот вывод не столь убедителен, как ответ «20 минут», который мы получили методом, предложенным дядюшкой Ирвом, зато он не требует никаких расчетов.
Другой способ упростить задачу — предположить, что вода из обоих кранов течет с одинаковой скоростью. Причем ванна при
Отсюда сразу становится ясно, что, по расчетам дядюшки Ирва, наполнение ванны должно занимать больше пятнадцати минут. Почему? Потому что «быстрый + быстрый» побьет «медленный + быстрый». Наша условно симметричная задача имеет два быстрых крана, в то время как у дядюшки Ирва один медленный и один быстрый. А поскольку 15 минут — ответ задачи для двух быстрых кранов, то ванна дядюшки Ирва будет наполняться дольше.
Получается, что благодаря рассмотрению двух гипотетических случаев — в первом ванна заполняется только холодной, так как горячая отключена, а во втором — горячей и холодной с одинаковой скоростью, — мы узнали, что ответ лежит в пределах 15–30 минут. В более сложных задачах, где порой невозможно найти точный ответ, и не только в математике, но и в других областях, такой подход может очень пригодиться.
Даже если вы все-таки найдете точное решение, не стоит самоуспокаиваться. Данную задачу можно решать более простыми способами. Это единственное место, где математика дает простор творчеству. Например, помимо метода дядюшки Ирва (с помощью обыкновенных дробей, приведенных к общему знаменателю), есть более забавный маршрут, приводящий к тому же результату. Несколько лет спустя, когда я попытался определить, почему эта задача настолько запутанна, до меня дошло, что в первую очередь из-за разных скоростей кранов. Необходимость следить, каков вклад каждого крана в наполнение ванны, вызывает напряжение. Особенно если вы можете представить такую картину: горячая и холодная вода плещется из кранов, перемешиваясь в ванне.
Так что давайте не смешивать два вида воды, по крайней мере в нашей голове. Вместо одной ванны представим себе две разные конвейерные ленты с движущимися ваннами с отдельными кранами с горячей и холодной водой.