Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Существуют сильные взаимосвязи между структурами группы Ли и алгебры Ли, которую сам ученый описал в трехтомном труде «Теория групп преобразований», созданном совместно с Фридрихом Энгелем. Соавторы подробно обсудили четыре классических семейства групп, два из которых – группы поворотов в n-мерном пространстве для четного или нечетного n. Эти два случая были выбраны из-за своих выраженных особенностей. Например, при нечетном числе измерений поворот требует фиксированной оси, а в пространстве с четным числом измерений она не обязательна.

Киллинг

Очередной значительный шаг в развитии теории групп сделал Вильгельм Киллинг. В 1888 году он заложил основу теории структуры для алгебр Ли, в частности создал классификацию всех простых алгебр Ли – основных строительных блоков, из которых собираются все остальные алгебры Ли. Киллинг начал с известной структуры для самой понятной простой алгебры Ли – специальной линейной алгебры sl(n) для n ≥ 2. Начнем со всех матриц размера n × n с комплексными числами при условии, что скобка Ли для двух матриц A и

B равна ABBA. Эта алгебра Ли не только простая, но и подалгебра sl(n). Для всех матриц, чьи диагональные значения в сумме дают 0, она действительно простая. Она имеет размерность n2 − 1.

Ли знал структуру этой алгебры, и он показал, что любая простая алгебра Ли имеет схожую структуру. Замечательно, что он смог это доказать, исходя лишь из знания того, что алгебра Ли простая. Его метод состоял в привязке любой простой алгебры к геометрической структуре под названием «система корней». Он использовал методы линейной алгебры для изучения и классификации системы корней, а затем выводил структуру соответствующей алгебры Ли от этой системы. Значит, классификация возможной геометрии системы корней равнозначна классификации простых алгебр Ли.

Результат работы Киллинга трудно переоценить. Он доказал, что простые алгебры Ли укладываются в четыре бесконечных семейства, ныне известных как An, Bn

, Cn и Dn. Вдобавок есть пять исключений: G2, F4, E6,
E7 и E8. На самом деле Киллинг считал, что исключений шесть, но два оказались равнозначными алгебрами, описанными в разных выражениях. Размерности в исключительных алгебрах Ли равны 14, 56, 78, 133 и 248. Они по-прежнему несколько загадочны для ученых, хотя мы четко понимаем, почему они существуют.

Простые группы Ли

Из-за столь тесной связи между группами Ли и соответствующими им алгебрами классификация простых алгебр Ли ведет к классификации простых групп Ли. В частности, четыре семейства An, Bn, Cn

и Dn являются алгебрами Ли для четырех классических семейств групп преобразований. Ими же являются, соответственно, группы всех линейных преобразований в (n + 1) – мерном пространстве, группы поворотов в (2n + 1) – мерном пространстве, симплектическая группа в пространстве с 2n измерениями, что особенно важно в классической и квантовой механике и оптике, и группа поворотов в 2n-мерном пространстве. Несколько заключительных штрихов к этой истории были добавлены позже, в частности введение Гарольдом Скоттом Макдональдом Коксетером и Евгением Дынкиным графического подхода к комбинаторному анализу системы корней, известного сейчас как диаграммы Коксетера – Дынкина.

Группы Ли важны для современной математики по многим причинам. Например, в механике многие системы обладают симметрией, и это позволяет найти решения для динамических уравнений. В основном именно симметрии образуют группы Ли. В математической физике изучение элементарных частиц во многом опирается на математический аппарат групп Ли, опять-таки благодаря определенным принципам симметрии. Исключительная группа Киллинга Е8 играет важную роль в теории суперструн – основополагающем направлении в поисках связей между квантовой механикой и общей теорией относительности. Сделанное Саймоном Дональдсоном в 1983 г. эпохальное открытие о том, что четырехмерное евклидово пространство обладает нестандартными дифференцируемыми структурами, открывает новый взгляд на группы всех поворотов Ли в четырехмерном пространстве. Теория групп Ли по-прежнему жизненно важна для всех отраслей математики.

Абстрактные группы

В «Эрлангенской программе» Клейна особый упор делается на то, что исследуемые группы состоят из преобразований, т. е. элементы группы действуют в некотором пространстве. И большая часть ранних работ по теории групп предполагает такую структуру. Но более поздние исследования потребовали нового уровня абстрагирования: сохранить свойства группы, но отказаться от понятия пространства. Группа состоит из математических объектов, которые могут быть объединены для получения аналогичных объектов, но они не обязательно должны быть преобразованиями.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература