В 1847 г. Габриель Ламе заявил, что нашел доказательство для любой степени, но Эрнст Эдуард Куммер указал на допущенную им ошибку. Ламе без доказательств принял утверждение, что
Кольца, поля и алгебры
Определение Куммера для идеального числа было громоздким, и Дедекинд заново сформулировал его в терминах идеалов – специальных подсистем целых алгебраических чисел. Благодаря школе Давида Гильберта в Гёттингене, в частности Эмми Нётер, эта отрасль науки получила солидный фундамент в виде аксиом. В их списке, кроме групп, были определены три другие алгебраические системы: кольца, поля и алгебры.
В кольце определены такие действия, как сложение, вычитание и умножение, причем они удовлетворяют всем обычным законам алгебры, за исключением коммутативного для умножения. Если же в системе выполняется и он, значит, мы имеем дело с коммутативным кольцом.