Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

ЛЕНТА МЁБИУСА

Топология может преподнести сюрпризы. Самый известный из них – лента Мёбиуса (лист Мёбиуса). Чтобы ее получить, нужно взять длинную полоску бумаги и склеить ее противоположные концы, повернув один из них вполоборота. Без поворота мы получим обычный цилиндр. Различие между этими двумя поверхностями станет понятно, если мы попробуем их покрасить. У цилиндра мы легко сможем выкрасить наружную поверхность в красный цвет, а внутреннюю в синий. Но если вы начнете красить красным одну сторону ленты Мёбиуса и будете поступательно двигаться от окрашенной части к неокрашенной, окажется, что вы выкрасили в красный цвет всю ленту. Из-за полуоборота внутренняя поверхность соединилась с наружной.

Еще одно отличие проявится, если вы разрежете ленту пополам вдоль всей ее длины. Да, она разделится на две части, но они останутся связанными друг с другом.

Проблески общей теории первым заметил Гаусс, время от времени пытавшийся привлечь внимание коллег к необходимости некой теоретической базы для геометрических свойств схем. Он также изобрел новый топологический инвариант, который мы сейчас называем коэффициентом зацепления

, для исследований магнетизма. Это число определяет, как одна замкнутая кривая обкручивается вокруг другой. Гаусс вывел формулу для подсчета коэффициента зацепления на основе аналитических выражений, описывающих кривые. Такой же инвариант, число оборотов (или индекс точки) для замкнутой кривой по отношению к точке, был использован в одном из доказательств Основной теоремы алгебры.

Наибольший вклад в становление топологии внесли студент Гаусса Иоганн Листинг и ассистент Август Мёбиус. Листинг учился у Гаусса в 1834 г., и в его труде «Предварительные исследования по топологии» впервые используется термин «топология». Сам Листинг сначала применял выражение «геометрия позиций», но его уже пустил в обиход Карл фон Штаудт для описания проективной геометрии, и Листингу пришлось искать другой вариант. Кроме того, Листинг искал способ обобщения формулы Эйлера для многогранников.

Мёбиус сумел четко обозначить важную роль непрерывных преобразований. Его нельзя было назвать самым продуктивным ученым, но он отличался чрезвычайно кропотливым подходом к любой исследуемой им теме. В частности, именно он обратил внимание на то, что у поверхности отнюдь не всегда есть две четко разделенные стороны, приведя в пример свою знаменитую ленту. Эту поверхность независимо друг от друга открыли и Мёбиус, и Листинг в 1858 г. Листинг опубликовал свое открытие в книге «Der Census Räumlicher Complexe» («Описание пространственной сложности»), а Мёбиус – в статье об исследовании свойств поверхностей.

Долгое время идеи Эйлера о многогранниках оставались в стороне от основных направлений математической мысли, но в какой-то момент несколько маститых ученых открыли новый подход к геометрии, который они назвали тогда analysis situs

, т. е. анализ размещений. Под этим подразумевалась качественная теория форм как самостоятельная дисциплина, дополняющая более привычную тогда количественную теорию длин, углов, площадей и объемов. Этот взгляд делался всё более популярным по мере появления новых открытий в традиционных исследованиях основных направлений математики. Ключевым шагом стало открытие связей между комплексным анализом и геометрией поверхностей, сделанное Риманом.

Сфера Римана

Очевидный способ осмысления комплексной функции f состоит в том, чтобы интерпретировать ее как отображение из одной комплексной плоскости в другую. Базовая формула для такой функции, w

= f(z), предлагает нам взять любое комплексное число z, применить к нему f
и получить другое комплексное число w, связанное с z. Геометрически z принадлежит одной комплексной плоскости, а w – фактически второй, независимой копии комплексной плоскости.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература