Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Рабочее определение вероятности некоего события – относительное число случаев, в которых оно происходит. Если речь о кости, у которой может одинаково часто выпасть любая из шести граней, вероятность выпадения каждой грани равна 1/6. Более ранние работы по вероятности основаны на подсчете количества вариантов появления каждого события и делении его на общее число возможностей.

Главной проблемой здесь были сочетания. Скажем, если взять колоду из шести карт, сколько в ней будет разных подмножеств по четыре карты? Один из способов – перечислить все эти подмножества: если у нас карты с достоинством 1–6, получится:



т. е. их всего 15. Но такой метод слишком громоздкий для большего количества карт, и здесь нужно нечто более систематическое.

Представим, что мы выбираем по одному элементу из подмножества. Первый можно выбрать шестью способами, второй только пятью (один использован), третий – четырьмя, четвертый – тремя. Общее число выборов в этом порядке равно 6 × 5 × 4 × 3 = 360. Но каждое подмножество сосчитано здесь 24 раза: начав с 1234, далее мы найдем 1243, 2134 и т. д. и получим 24 способа (4 × 3 × 2) переставить четыре объекта. Значит, точный ответ будет 360/24, т. е. 15. Этот аргумент показывает, что количество способов выбрать m объектов из общего числа n объектов равно:



Это выражение называется биномиальным коэффициентом, потому что появляется и в алгебре. Если мы преобразуем его в таблицу, чтобы n-я строка содержала биномиальные коэффициенты



то результат будет выглядеть так.

В шестой (счет начинается с нуля) строке мы увидим числа 1, 6, 15, 20, 15, 6, 1.

Сравним с формулой

(x + 1)6 = x6 + 6x5 + 15x4 + 20

x3 + 15x2 + 6x + 1,

и мы видим, что те же числа появляются как коэффициенты. Это не совпадение.

Треугольник чисел назван треугольником Паскаля, потому что обсуждался Паскалем в 1655 г. Однако известен он был гораздо раньше: первое упоминание в древнеиндийском шастре «Чандас шастра» датируется примерно 950 г. Также его знали персидские математики Аль-Караджи и Омар Хайям (в современном Иране его называют треугольником Хайяма).


Треугольник Паскаля


Теория вероятностей

Биномиальные коэффициенты с большим успехом были использованы в первой книге по теории вероятностей – труде под названием «Искусство предположений», написанном Якобом Бернулли в 1713 г. В книге автор поясняет столь необычное название.

Мы определяем искусство предположений, или стохастическое искусство, как искусство точной оценки вероятностей, чтобы в наших суждениях и действиях мы всегда опирались на то, что признано лучшим, наиболее приемлемым, наиболее определенным или рекомендуемым; это единственная основа для мудрости философа и благоразумия государственного мужа.

Возможно, правильнее было бы назвать эту книгу «Искусство догадок».

Бернулли принимал как данность, что чем больше количество испытаний, тем лучше можно будет оценить вероятность.

Предположим, без вашего ведома в урну поместили 3000 белых камней и 2000 черных. Пытаясь определить количество этих камней, вы вынимаете один камень за другим (каждый раз возвращая его обратно) и обращаете внимание, как часто попадаются белый и черный камни. Насколько часто вам придется так делать: 10 раз, или 100 раз, или 1000 раз и т. д., что более вероятно, ‹…› чтобы [в итоге] выбранные белые и черные камни находились в том же соотношении 3:2, что и в урне?

Здесь Бернулли не только задал один из основных вопросов, но и изобрел стандартный иллюстративный пример – камни в урне. Он явно был уверен, что пропорция 3:2 будет разумным результатом, но понимал, что в реальности эксперименты могут лишь приблизиться к ней. Однако он был уверен еще и в том, что при достаточном количестве попыток эта аппроксимация будет всё точнее и точнее.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература