Это открытие выросло из первых попыток обдумать существование комплексных функций. Самые простые функции, такие как возведение в квадрат или в куб, зависят только от алгебраических операций, поэтому было легко определить их для комплексных чисел. Чтобы возвести в квадрат комплексное число, необходимо умножить его само на себя, и тот же прием годится для действительных чисел. Квадратные корни из комплексных чисел немного каверзнее, но приносят нам приятную награду за потраченные силы: каждое
комплексное число имеет квадратный корень. И действительно, любое такое число, не равное 0, имеет ровно два квадратных корня (положительный и отрицательный, равные по модулю). Так мы обогатили действительные числа новым числом i, вдобавок обеспечив –1 квадратным корнем и определив квадратные корни для любого числа в расширенной системе комплексных чисел. А как быть с синусами, косинусами, экспонентами и логарифмами? На этом этапе они особенно интересны, но и более головоломны. Особенно логарифмы.Как и число i
само по себе, логарифмы комплексных чисел тут же превратились в очередную проблему. В 1702 г. Иоганн Бернулли исследовал процесс интегрирования, применив его к обратным полиномам второй степени. Он нашел изысканный способ решения этой задачи, когда у квадратного уравнения есть два действительных корня: r и s. Теперь мы можем переписать это подынтегральное выражение, используя так называемые простейшие дроби:
что приводит нас к интегралу
A
ln (x – r) + B ln (x – s).А что, если квадратное уравнение не имеет действительного корня? Как, например, проинтегрировать величину, обратную x
2 + 1? Бернулли понимал, что раз уж вы занялись алгеброй комплексных чисел, трюк с простейшей дробью сработает и здесь, только в этом случае r и s будут комплексными числами. Например:
а интеграл этой функции принимает форму:
1
/2 ln (x + i) + 1/2 ln (x – i).Этот финальный шаг не совсем удовлетворителен, поскольку требует определения логарифма комплексного числа. Возможно ли сделать корректным такое утверждение?
Бернулли считал, что можно, и благодаря этой идее добился потрясающего эффекта. Той же позиции придерживался и Лейбниц. Однако математические детали всё еще требовали доработки. К 1712 г. оба ученых сошлись в споре по самой сути такого подхода. Забудем про комплексные
числа, – что такое логарифм отрицательного действительного числа? Бернулли считал, что он тоже должен быть действительным, а Лейбниц утверждал, что он будет комплексным. Бернулли представил нечто вроде доказательства своей правоты: с помощью обычного вычислительного формализма уравнение
может быть проинтегрировано, получим
ln (-x
) = ln (x).Однако Лейбница это не убедило, и он по-прежнему утверждал, что интегрирование будет верно только для положительного действительного x
.Этот узконаправленный спор был разрешен в 1749 г. Эйлером, и оказалось, что Лейбниц был прав. Бернулли забыл, что любой интеграл включает произвольную константу. И вместо полученного Бернулли выражения должно быть
ln (-x
) = ln (x) + cдля некой константы с
. Но что это за константа? Если логарифм отрицательных (и комплексных) чисел должен иметь свойства логарифма действительных чисел, что и является целью всей игры, то верно, чтоln (-x
) = ln (–1 × x) = ln (–1) + ln x,так что c
= ln (–1). Затем Эйлер привел последовательность изящных преобразований, получив еще более явную формулу для с. Прежде всего он нашел способ манипулирования различными формулами, содержащими комплексные числа, придя к выводу, что они ведут себя очень похоже на действительные, и получил соотношение между тригонометрической функцией и экспоненциальной:e
iθ = cos θ + i sin θ.Эта формула была предложена в 1714 г. Роджером Котсом. Установив, что θ = π, Эйлер получил превосходный результат:
e
iπ = –1,связавший две основные математические константы: e
и π. Вызывает восхищение как само существование этой связи, так и ее простота. Эта формула по праву считается одной из самых красивых формул всех времен.Взяв логарифм, мы получаем:
ln (–1) = i
π,приоткрывая тайну этой непостижимой константы с
из предыдущего текста: она равна iπ. В таком случае это мнимое число, т. е. Лейбниц был прав, а Бернулли ошибался.Но и это еще не всё: ящик Пандоры едва успел открыться. Если принять, что θ = 2π, то
e
2iπ = 1.Значит, ln (1) = 2i
π. Тогда уравнение x = x × 1 приводит к выводу:ln x
= ln x + 2 iπ.Тогда для любого целого n
ln x
= ln x + 2niπ.На первый взгляд, бессмыслица: это означает, что 2ni
π = 0 для любого n. Но есть и такой способ проинтерпретировать это выражение, что оно покажется осмысленным. В случае комплексных чисел логарифмическая функция многозначна. И действительно, кроме тех случаев, когда комплексное число z равно 0, функция ln z может принимать бесконечно много разных значений (когда z = 0, ее логарифм не определен).