Художники Возрождения не занимались исключительно живописью. Многие были востребованы как талантливые инженеры для военных и мирных проектов. Их отношение к искусству всегда имело и практическую сторону, и геометрия перспективы как раз и стала гранью, важной для архитектуры ничуть не меньше, чем для живописи. Также в то время оживился интерес к оптике и математике света, что привело к изобретению телескопа и микроскопа. Первым мэтром, заинтересовавшимся математикой, был Филиппо Брунеллески. По сути, его искусство стало движущей силой для его математики. Стоит также упомянуть о книге Леона Баттисты Альберти «Живопись», созданной в 1435 г. и напечатанной в 1511 г. Альберти начал с принятия некоторых важных, хотя и относительно безвредных упрощений, проявив рефлекс настоящего математика. Человеческое зрение – очень сложная тема. Например, мы используем два слегка расставленных в пространстве глаза, чтобы генерировать стереоскопические образы, получая ощущение глубины. Альберти упростил реальность, предложив работать с одним глазом с точечным зрачком, действующим как камера с малым отверстием. Он представил, как художник готовится писать картину, устанавливая мольберт и стараясь создать картинку на полотне с помощью единственного глаза. И с полотна, и с реального объекта картинка попадает на сетчатку, расположенную в задней части глаза. Самым простым (умозрительным) способом было бы сделать полотно прозрачным, смотреть через него с неподвижной точки и рисовать на полотне точно то, что видит глаз. Так трехмерная картинка
Эта идея вряд ли принесет пользу, если вы в точности станете следовать ей на практике. Но некоторые художники поступали именно так, используя полупрозрачные материалы или стекло вместо полотна. Они часто применяли этот прием на подготовительном этапе, нанося набросок на полотно перед тем, как писать картину. Более практичным подходом было бы использовать эту концептуальную формулировку для связи геометрии трехмерной сцены с двумерной картинкой на полотне. Привычная нам евклидова геометрия работает со свойствами, остающимися неизменными при их перемещении: длиной и углами. Хотя сам Евклид не формулировал свои принципы именно так, его основной инструмент – конгруэнтные треугольники – производит такой же эффект (имеются в виду треугольники одинаковой формы и размеров, но расположенные в разных местах). Точно так же геометрия перспективы сводится к свойствам, которые остаются неизменными при проекции. Легко заметить, что длины и углы не ведут себя так же. Вы можете прикрыть Луну одним пальцем – получается, длина способна меняться? С углами еще хуже: если вы посмотрите на угол здания и он прямой, то он будет
Проецирование картинки. Гравюра Альбрехта Дюрера
Какие же свойства геометрических фигур сохраняет проекция? Самые важные кажутся нам такими простыми, что трудно поверить в их значение. Точки остаются точками. Прямые – прямыми. Образ точки, расположенной на прямой, останется на изображении этой линии. Получается, если две линии встречаются в какой-то точке, их изображения тоже встречаются в соответствующей точке. Отношения между точками и прямыми сохраняются в проекции.
Важной чертой,
Такая особенность параллельных линий очень полезна для изображения перспективы. Это основа привычного рисования прямоугольных объектов в перспективе, когда используются линия горизонта и две исчезающие точки там, где параллельные линии коробки пересекают перпендикулярный им край. «О перспективе в живописи» – труд Пьеро делла Франческа, изданный в 1482–1487 гг., – развил метод Альберти в практические приемы для художников. Сам живописец успешно применял свои идеи в создании драматичных и весьма реалистичных полотен.