Однако довольно (во всяком случае, пока) рассуждать о молекулярной интерпретации температуры и о том глубоком смысле, которое распределение Больцмана придает этому понятию. Несмотря на туманность концепции температуры, методика ее измерения была хорошо отлажена задолго до того, как Больцман свел счеты с жизнью. Всем известные бытовые температурные шкалы (особенно Фаренгейта и Цельсия) давно уже были вполне практическим образом реализованы; изобретатель каждой из них начинал с того, что устанавливал для своей шкалы легко воспроизводимые и транспортируемые «фиксированные точки», то есть нуль-пункты. Даниэль Фаренгейт (1686–1736) зафиксировал в качестве нулевой точки своей шкалы самую низкую из всех легко достижимых в то время температур (которая все же находилась намного выше уже упоминавшегося здесь абсолютного нуля) – температуру замерзания смеси обычной соли и воды. За 96 (как ни странно, не за 100) градусов он принял температуру своей собственной легко перемещаемой в пространстве подмышки, – или, по крайней мере, среднюю температуру любой другой подмышки. Разделив на 96 ступеней разность температур между этими двумя довольно расплывчато обозначенными точками, он получил точку замерзания чистой воды на 32 градусах своей шкалы, а точку кипения воды – на отметке в 212 градусов, намного выше температуры подмышки. Андерс Цельсий (1701–1744) поступил более мудро: он взял за основу свойства самой воды, которые и определили опорные точки на его шкале – 100 градусов в точке замерзания и 0 – в точке кипения. Впоследствии эту шкалу пришлось перевернуть (о разумности этого шага мы поговорим в главе 9), и у горячих тел температуры стали выше, чем у холодных. Не так уж важно, но интересно, что в соответствии со своими определениями обе шкалы являются «стоградусными» – у обеих промежуток между их фиксированными точками составляет около 100 градусов, – но, так как для современного общества на шкале Фаренгейта точки кипения и замерзания воды, 32 и 212 градусов, оказались важнее исходных нуля (соляной смеси) и 96 (фаренгейтовской подмышки), стоградусной стали называть только шкалу Цельсия.
Чтобы закруглиться с рассказом о температурных шкалах, добавим еще, что есть, конечно, и шкала, которая начинается с абсолютного нуля. Она называется термодинамической шкалой температур, или просто абсолютной шкалой. Если градации этой шкалы имеют шаг, равный градусам шкалы Цельсия, тогда она называется шкалой Кельвина, в честь Уильяма Томсона, барона Кельвина Ларгского (1824–1907), пионера термодинамики[28]
. Если же градации абсолютной шкалы соответствуют градусам Фаренгейта, тогда термодинамическую температурную шкалу называют шкалой Ранкина, по имени шотландского инженера Джона Ранкина (1820–1872), ныне (хотя в его время это было вовсе не так) значительно менее известного теоретика паровых машин и сочинителя комических песенок. Насколько я знаю, сейчас почти никто не пользуется шкалой Ранкина: ну, разве что такие инженеры еще найдутся в Америке, где в повседневной жизни шкала Фаренгейта упрямо не желает уступать победу Цельсию. Напомним для полной ясности, что абсолютный нуль лежит на отметках –273,15 °C или –459,67 °F.Закончив наш экскурс в сферу практики, я должен теперь рассмотреть вопрос о том, как именно глубокая концепция температуры вошла в науку, в частности в термодинамику. Как могла температура быть наблюдаемой физической характеристикой во времена, когда ученые еще не осознавали реальность молекул и не имели ни малейшего представления о дискретности энергетических уровней? Другими словами, что собой представляла температура до Больцмана?