Это очень странно. Это все равно что сказать, что 2 х 3 не равняется 3 х 2, или, говоря алгебраически, a х
Ъ Ф b х a . Борн день и ночь размышлял об этой особенности, уверенный, что за ней скрывалось что-то фундаментальное. Неожиданно его озарило. Математические массивы и таблицы чисел, столь усердно составленные Гейзенбергом, уже были известны в математике. Существовали все расчеты для таких чисел - они назывались матрицами, и Борн изучал их в самом начале XX века, когда учился в Бреслау. Неудивительно, что более двадцати лет спустя он вспомнил об этой туманной ветви математической науки, ведь матрицы обладают одним свойством, которое всегда производит неизгладимое впечатление на студентов, впервые сталкивающихся с ними: получаемый при перемножении матриц результат зависит от порядка, в котором осуществляется перемножение, или, говоря математическим языком, матрицы не коммутируют.
Квантовая математика
Летом 1925 года, работая с Паскуалем Йорданом, Борн развил основы того, что сейчас называется матричной механикой. Вернувшись в сентябре в Копенгаген, Гейзенберг издалека присоединился к ученым, и в письмах они приступили к созданию исчерпывающей научной работы по квантовой механике. В этой работе, гораздо более ясной и наглядной, чем первая статья Гейзенберга, три автора подчеркнули фундаментальную важность некоммутативности квантовых переменных. В совместной работе с Йорданом Борн уже вывел равенство pq - qp = Wi
, где p и q - это матрицы, представляющие собой квантовые переменные, квантовый эквивалент импульса и положения. Постоянная Планка фигурировала в новом уравнении вместе с I, квадратным корнем из минус единицы. В работе, которая стала известна как «статья трех», команда из Геттингена обратила внимание на то, что это «фундаментальное квантово-механическое равенство». Но что это значило с точки зрения физики? Постоянная Планка к этому времени была уже достаточно знакома ученым, как и уравнения с участием I (в которых уже содержался намек на будущее, ведь такие уравнения обычно включали в себя колебания, или волны). Но матрицы в 1925 году были совершенно незнакомы большинству математиков и физиков, а потому некоммутативности казалась им столь же странной, сколь странной казалась постоянная Планка их предшественникам в 1900 году. Для тех, кто мог разобраться с математикой, результаты были поразительными. Ньютонианская механика уступила место похожим уравнениям, в которых были задействованы матрицы, и, как выразился Гейзенберг: «Было очень странно выяснить, что многие старые следствия ньютонианской механики вродесохранения энергии и т. n. можно было вывести и с применением новой схемы»29. Другими словами, матричная механика включала в себя
ньютонианскую механику точно так же, как уравнения теории относительности Эйнштейна в качестве особого случая включали в себя ньюто-нианские уравнения. К сожалению, с математикой разобрались немногие, и большинство физиков не сразу осознало, насколько значительный прорыв совершил Гейзенберг вместе с геттингенской группой. Однако не обошлось и без исключения, которое обнаружилось в английском Кембридже.Поль Дирак был на несколько месяцев младше Гейзенберга; он родился 8 августа 1902 года. Обычно его считают единственным английским теоретиком масштабов Ньютона, ведь
Физика и философия. С. 41.