Читаем В поисках кота Шредингера. Квантовая физика и реальность полностью

Летом 1925 года, работая с Паскуалем Йорданом, Борн развил основы того, что сейчас называется матричной механикой. Вернувшись в сентябре в Копенгаген, Гейзенберг издалека присоединился к ученым, и в письмах они приступили к созданию исчерпывающей научной работы по квантовой механике. В этой работе, гораздо более ясной и наглядной, чем первая статья Гейзенберга, три автора подчеркнули фундаментальную важность некоммутативности квантовых переменных. В совместной работе с Йорданом Борн уже вывел равенство pq qp = ħ

/i, где p и q
– это матрицы, представляющие собой квантовые переменные, квантовый эквивалент импульса и положения. Постоянная Планка фигурировала в новом уравнении вместе с ί, квадратным корнем из минус единицы. В работе, которая стала известна как «статья трех», команда из Геттингена обратила внимание на то, что это «фундаментальное квантово-механическое равенство». Но что это значило с точки зрения физики? Постоянная Планка к этому времени была уже достаточно знакома ученым, как и уравнения с участием ί (в которых уже содержался намек на будущее, ведь такие уравнения обычно включали в себя колебания, или волны). Но матрицы в 1925 году были совершенно незнакомы большинству математиков и физиков, а потому некоммутативности казалась им столь же странной, сколь странной казалась постоянная Планка их предшественникам в 1900 году. Для тех, кто мог разобраться с математикой, результаты были поразительными. Ньютонианская механика уступила место похожим уравнениям, в которых были задействованы матрицы, и, как выразился Гейзенберг: «Было очень странно выяснить, что многие старые следствия ньютонианской механики вроде сохранения энергии и т. n. можно было вывести и с применением новой схемы»
[29]. Другими словами, матричная механика включала в себя ньютонианскую механику точно так же, как уравнения теории относительности Эйнштейна в качестве особого случая включали в себя ньюто-нианские уравнения. К сожалению, с математикой разобрались немногие, и большинство физиков не сразу осознало, насколько значительный прорыв совершил Гейзенберг вместе с геттингенской группой. Однако не обошлось и без исключения, которое обнаружилось в английском Кембридже.

Поль Дирак был на несколько месяцев младше Гейзенберга; он родился 8 августа 1902 года. Обычно его считают единственным английским теоретиком масштабов Ньютона, ведь именно он разработал самую полную форму науки, которая теперь называется квантовой механикой. И все же он обратился к теоретической физике только после того, как в 1921 году окончил Бристольский университет, получив диплом инженера. Дирак не смог сразу найти работу по специальности, и ему предложили поступить в Кембридж, чтобы изучать математику, но от этого предложения он вынужден был отказаться из-за нехватки денег. Оставшись с родителями в Бристоле, он – благодаря инженерному образованию – освоил трехлетний математический курс всего за два года и в 1923 году стал бакалавром прикладной математики. Теперь он наконец-то мог отправиться в Кембридж и заняться исследованиями, получив грант от Отдела научных и промышленных исследований, – и только прибыв в Кембридж, он впервые услышал о квантовой теории.

Итак, в июле 1925 года, когда Дирак попал на лекцию Гейзенберга в Кембридже, он был никому не известным и неопытным аспирантом. Хотя Гейзенберг тогда не рассказал аудитории о своей работе, он упомянул о ней в разговоре с научным руководителем Дирака Ральфом Фаулером и в итоге в середине августа послал ему копию статьи, до того как она вышла на страницах Zeitschrift für Physik. Фаулер передал статью Дираку, который первым ознакомился с ней за пределами Геттингена (не считая друга Гейзенберга Паули), получив шанс изучить новую теорию. В этой первой статье Гейзенберг хотя и указал на некоммутативность переменных в квантовой механике, то есть матриц, не развил свою идею, ходя вокруг да около. Разобравшись с уравнениями, Дирак быстро оценил фундаментальное значение простого факта, что a × b b × a. В отличие от Гейзенберга, Дирак уже знал математические величины, которые вели себя таким образом, и за несколько недель смог переработать уравнения Гейзенберга с позиции той ветви математики, которую за век до этого развил Уильям Гамильтон. По величайшей иронии научной судьбы уравнения Гамильтона, нашедшие свое применение в квантовой теории, отказавшейся от концепции орбит электронов, в XIX веке были выведены в значительной степени для того, чтобы использоваться при расчете орбит тел в системе – например, в Солнечной системе, где находится несколько взаимодействующих друг с другом планет.

Перейти на страницу:

Похожие книги

Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература