Читаем Вечность. В поисках окончательной теории времени полностью

Не давая (пока что) точного математического определения энтропии, на примере смешивания песка двух цветов мы можем показать, что перемешивать вещи значительно проще, чем разделять их обратно. Представьте себе миску, в которую насыпали песок: все синие песчинки находятся у одного бортика, а все красные у противоположного. Очевидно, что эта конфигурация достаточно специальная: если потрясти миску или помешать содержимое ложкой, то красный песок начнет смешиваться с синим. Если же с самого начала насыпать в миску смесь двух типов песка, то конфигурация будет устойчива: сколько ни перемешивай, менее разнородной смесь не станет. Причина проста: для того чтобы разделить два типа песка, нам потребуется применить намного более точное действие, чем простое потряхивание или перемешивание. Нам придется взять увеличительное стекло и аккуратно поработать пинцетом, перенося красные песчинки к одному бортику миски, а синие к другому. Для создания нестабильного специального состояния необходимо вкладывать куда больше труда, чем для создания стабильной неразберихи.

Все то же самое можно изложить с ужасающе научной количественной точки зрения – что Больцман и другие, собственно говоря, и сделали в 1870-х годах. Мы тщательно изучим результаты их работы и попробуем понять, на какие вопросы они дают ответы, а на какие нет и насколько эти ответы согласуются с основополагающими законами физики, которые, как мы знаем, полностью обратимы. Однако уже сейчас должно быть понятно, что ключевую роль здесь играет большое количество атомов, составляющих макроскопические объекты в реальном мире. Если бы у нас была только одна красная песчинка и одна синяя, то между «смешанным» и «несмешанным» состояниями никакого различия бы не было. В предыдущей главе мы говорили о том, что физические законы работают совершенно одинаково как вперед во времени, так и назад (при условии, что мы дали надлежащее определение направлению времени). Это микроскопическое описание, требующее тщательного отслеживания каждой индивидуальной составляющей системы. Однако в реальном мире, где в различных процессах участвует невообразимое количество атомов, мы попросту не в состоянии обрабатывать такие объемы информации. Нам приходится прибегать к упрощениям – рассматривать средний цвет, или температуру, или давление вместо положения и импульса каждого атома. Когда мы мыслим макроскопически, мы забываем (или отбрасываем) детальную информацию об отдельных частицах, – и здесь на сцену выходят энтропия и необратимость.

Огрубление

Главное, что мы хотим понять, – это «как макроскопические характеристики системы, состоящей из множества атомов, меняются вследствие движения отдельных атомов?» (Я буду попеременно использовать все три термина – «атомы», «молекулы» и «частицы», подразумевая примерно одно и то же, так как для нас важно лишь то, что это крохотные объекты, подчиняющиеся обратимым законам физики, и что для того, чтобы сконструировать нечто макроскопическое, нужно взять необычайно много таких объектов.) Чтобы разобраться в этом, рассмотрим герметичный контейнер, разделенный на две части перегородкой, в которой проделано отверстие. Молекулы газа летают в одной половине контейнера и чаще всего отскакивают от центральной перегородки, однако периодически часть молекул пролетает сквозь отверстие на другую половину. Можно предположить, например, что молекулы отскакивают от перегородки в 995 случаях из 1000, но полпроцента из них при каждом столкновении (которое случается, скажем, каждую секунду) умудряется пробраться в другую часть контейнера.



Рис. 8.1. Контейнер, полный молекул газа, посередине которого установлена перегородка с отверстием. Каждую секунду у каждой молекулы есть крошечный шанс пролететь сквозь отверстие на другую сторону




Этот пример весьма специфичен и тем удобен; мы можем в деталях изучить каждый вариант развития событий и описать, что при этом происходит.[127] Про каждую молекулу в левой половине контейнера мы можем сказать, что каждую секунду с вероятностью 99,5 % она останется в своей половине, а с вероятностью 0,5 % переместится в противоположную; то же самое верно для правой половины контейнера. Это правило абсолютно инвариантно относительно обращения времени: если снять на пленку движение произвольной частицы, подчиняющейся этому правилу, то при просмотре фильма невозможно будет сказать, вперед или назад по времени воспроизводится запись. На уровне отдельных частиц прошлое и будущее совершенно идентичны.

Перейти на страницу:

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг