Читаем Вечность. В поисках окончательной теории времени полностью

• но не слишком быстро; сами числа становятся неимоверно больше, однако их логарифмы увеличиваются довольно медленно. Один миллиард намного больше тысячи, однако 9 (логарифм миллиарда) не сильно больше 3 (логарифм 1000).

Когда дело доходит до огромных чисел, например таких, с которыми мы сталкиваемся в этой игре, последнее свойство здорово нам помогает. Поделить 2000 частиц поровну можно 2×10600 способов – просто невообразимое число! Но логарифм этого числа равен всего лишь 600,3 – с этим еще можно иметь дело.

Формула Больцмана для энтропии, традиционно обозначаемой буквой S (букву E мы использовать не хотим, потому что она обычно обозначает энергию), гласит, что энтропия равна произведению некоторой константы k, которая называется постоянной Больцмана, на логарифм

W, где W – число микроскопических состояний системы, неразличимых с макроскопической точки зрения.[130] Таким образом,[131]

S = k

lg W.

Это, без сомнения, одно из важнейших уравнений за всю историю науки – триумф физики XIX века, которое можно поставить в один ряд с ньютоновским описанием динамики в XVII веке и революционными открытиями в области теории относительности и квантовой механики в двадцатом. Посетив могилу Больцмана в Вене, вы увидите, что это уравнение выгравировано на его надгробном камне (см. главу 2).[132]

Взятие логарифма избавляет нас от основной проблемы, а формула Больцмана приводит как раз к тем свойствам, которые разумно ожидать от такого явления, как энтропия. В частности, полная энтропия двух систем после объединения равна всего лишь сумме энтропий этих систем. Это обманчиво простое уравнение обеспечивает количественную связь между микроскопическим миром атомов и макроскопическим миром, который мы видим вокруг себя.[133]

Контейнер с газом возвращается

Для примера мы могли бы вычислить энтропию показанного на рис. 8.2 контейнера с газом, внутри которого есть перегородка с небольшим отверстием. Наша макроскопическая наблюдаемая – это полное количество молекул в левой или правой половине контейнера (нам неизвестно, что это за молекулы, где они находятся и какие у них импульсы). Величина W в данном примере – это всего лишь число способов распределить 2000 частиц между двумя половинами контейнера так, чтобы их количество в каждой половине оставалось постоянным. Если слева 2000 частиц, то W равно 1, а lg

W равен 0. Еще несколько вариантов перечислено в табл. 8.1.



Таблица 8.1. Количество расположений W и логарифм этого значения, вычисленные для контейнера с 2000 частицами, часть из которых находится слева от перегородки, а часть – справа


На рис. 8.3 представлено изменение энтропии (в определении Больцмана) со временем в нашем контейнере с газом. Я перемасштабировал график так, чтобы максимальное значение энтропии контейнера равнялось 1. Начальное значение энтропии относительно невелико – оно соответствует первой конфигурации на рис. 8.2, где в левой части контейнера находится 1600 молекул, а в правой – только 400. По мере того как молекулы постепенно просачиваются сквозь отверстие в центральной перегородке, энтропия увеличивается. Это лишь один пример эволюции системы; поскольку наш «закон физики» (каждую секунду у каждой частицы есть 0,5-процентная вероятность попасть на другую сторону) включает вероятностную составляющую, движение системы в разных экспериментах неизбежно будет отличаться в деталях. Однако в подавляющем большинстве случаев энтропия все же будет увеличиваться, поскольку система тяготеет к макроскопическим конфигурациям, соответствующим большему числу микроскопических расстановок. Второе начало термодинамики в действии.

Согласно Больцману и коллегам, это и есть источник стрелы времени. Сначала у нас имеется лишь набор микроскопических законов физики, инвариантных относительно обращения времени: для них прошлое и будущее неразличимы. Однако мы имеем дело с системами, включающими огромное количество частиц, для полного описания состояния которых нам не требуется отслеживать каждую деталь – мы следим лишь за некоторыми поддающимися наблюдению макроскопическими величинами. Энтропия – это мера числа микроскопических состояний, неразличимых с точки зрения макроскопического наблюдателя (и под этим заявлением мы подразумеваем, что она пропорциональна логарифму этого числа). В предположении, что система развивается по направлению к макроскопическим конфигурациям, соответствующим большему количеству возможных состояний, естественно говорить о том, что со временем энтропия увеличивается.




Перейти на страницу:

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг