Формула для энтропии, выведенная Больцманом, основывается на величине
Для контейнера с газом, разделенного перегородкой на две половины, микросостоянием в любой момент времени является список положений и импульсов всех молекул газа. Однако нас интересовало только, сколько молекул находится слева от перегородки, а сколько – справа. Неявным образом каждый вариант деления группы молекул на части – сколько-то слева, а оставшиеся справа – определял «макросостояние» контейнера. А когда мы вычисляли значения
Раньше решение не отслеживать ничего, кроме количества молекул в каждой половине контейнера, казалось нам совершенно безобидным. Но мы могли бы следить и за массой других параметров. Имея дело с атмосферой в настоящей комнате, мы можем учитывать намного больше параметров, чем просто количество молекул в каждой части помещения: например, отслеживать температуру, плотность и атмосферное давление в каждой точке комнаты или, по крайней мере, в некотором наборе точек. Если в атмосфере содержится смесь газов, то мы могли бы по отдельности следить за плотностью и другими параметрами каждого из газов. В любом случае, объем информации, которым нам пришлось бы при этом манипулировать, все равно был бы намного меньше, чем если бы мы записывали положения и импульсы всех молекул в комнате. Тем не менее процедура выбора, какую информацию относить к макроскопическим характеристикам, а какую отбрасывать как несущественную составляющую микросостояния, определена недостаточно четко.
Процесс деления пространства микросостояний какой-то физической системы (газ в контейнере, стакан воды или Вселенная) на наборы, которые мы помечаем как «макроскопически неразличимые», называется «огрублением». Это такая черная магия, играющая критически важную роль в наших рассуждениях об энтропии. Рисунок 8.5 демонстрирует, как она работает: мы всего лишь делим пространство всех состояний системы на области (макросостояния), которые с точки зрения макроскопического наблюдателя кажутся одинаковыми. Каждая точка внутри любой такой области соответствует одному из микросостояний, а энтропия, связанная с данным микросостоянием, пропорциональна логарифму площади этой области, которому это микросостояние принадлежит (в действительности не площади, а объема, так как мы говорим о чрезвычайно многомерном пространстве). При взгляде на подобную схему становится очевидно, почему энтропия имеет тенденцию к увеличению: как правило, система развивается по направлению от состояний с низкой энтропией, соответствующих крошечной части пространства состояний, к состояниям из объемных областей, с которыми связаны большие значения энтропии.
Рис. 8.5.
Процедура огрубления представляет собой разделение пространства всех возможных микросостояний на области, считающиеся неразличимыми с макроскопической точки зрения, – макросостояния. С каждым макросостоянием связано значение энтропии, пропорциональное логарифму объема этого макросостояния в пространстве состояний. Размер областей с низкой энтропией увеличен в целях наглядности; в действительности они чрезвычайно малы по сравнению с областями с высокой энтропией