Читаем Вечность. В поисках окончательной теории времени полностью

Рисунок 8.5 не масштабирован; если бы мы хотели представить реальную систему, то макросостояния с низкой энтропией занимали бы намного меньшую площадь по сравнению с площадью, отведенной под макросостояния с высокой энтропией. Как мы убедились на примере с поделенным на две части контейнером, количество микросостояний, соответствующих макросостояниям с высокой энтропией, куда больше количества микросостояний, определяющих макросостояния с низкой энтропией. Нет ничего удивительного в том, что система с низкой начальной энтропией перейдет в более объемные области пространства состояний, к макросостояниям с высокой энтропией. Если же вначале система обладает высокой энтропией, то она может очень долго блуждать по пространству состояний, не встречая при этом областей с низкой энтропией. Вот что мы имеем в виду, говоря, что система находится в равновесии: она не находится в статическом микросостоянии, просто никогда не выходит из области, соответствующей макросостоянию с высокой энтропией.

Все эти рассуждения могут показаться вам нелепыми. Два микросостояния принадлежат одному и тому же макросостоянию, если они макроскопически неразличимы. Но это всего лишь один из способов сказать: «…когда мы не можем отличить одно от другого, основываясь на своих макроскопических наблюдениях». Именно это «мы» и должно вызывать у вас тревогу. Почему вообще мы приплели сюда какие-то свои способности? Мы говорим об энтропии как о характеристике всего мира

, а не как об одной из сторон нашего умения воспринимать мир
. Два стакана воды находятся в одном и том же макросостоянии, если весь объем воды в них имеет одинаковую температуру, даже если распределения положений и импульсов молекул воды в них отличаются, потому что мы не можем непосредственно измерить эти величины. Однако представьте себе, что нам встретилась раса супернаблюдательных инопланетян, способных впериться взором в толщу воды и увидеть положения и импульсы каждой заключенной там молекулы. Неужели эта раса вправе будет заявить, что энтропии вообще не существует?

Ученые, работающие в области статистической механики, пока что не признали единственно верным ни один из возможных ответов на озвученные выше вопросы (если бы это произошло, то мы бы только его и рассматривали). Давайте обсудим пару мнений.

Прежде всего, многие считают, что это вообще не важно. То есть вам-то может быть очень даже важно, как именно вы будете объединять микросостояния в макросостояния в целях какой-то конкретной актуальной для вас физической задачи, но в конечном итоге не имеет значения, как вы сделаете это, если единственная ваша цель – доказать истинность какого-то утверждения вроде второго начала термодинамики. Если посмотреть на рис. 8.5, станет понятно, почему второе начало термодинамики работает: в пространстве состояний гораздо больший объем отведен под состояния с высокой энтропией, чем с низкой, поэтому если мы начнем путешествие из последнего состояния, нет ничего удивительного в том, что в итоге мы окажемся в первом. Однако так будет всегда, независимо от того, как мы отсортируем микросостояния. Второе начало термодинамики непоколебимо; оно зависит от определения энтропии как логарифма от некоего объема внутри пространства состояний, но не от точного способа выбрать этот объем. Как бы то ни было, на практике из множества альтернатив мы выбираем что-то одно, поэтому такая прозрачная попытка избежать прямого ответа не может нас полностью удовлетворить.

Второе мнение заключается в том, что выбор – как именно провести огрубление – не может быть абсолютно произвольным и зависящим от человека, даже если без определенной степени предвзятости не обойтись. Действительно, мы сортируем микросостояния естественным, на наш взгляд, образом, учитывая реальные физические условия, а не собственные прихоти. Например, наблюдая за температурой и давлением в стакане воды, мы отбрасываем ту информацию, получить которую можно лишь путем изучения содержимого данного стакана под микроскопом. Мы определяем средние свойства в относительно небольших областях пространства, потому что так работают наши органы чувств. Определившись с доступными критериями огрубления, мы получаем относительно хорошо определенный набор поддающихся макроскопическому наблюдению величин.

Перейти на страницу:

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг