Читаем Волшебный двурог полностью

— Разница в том, что математическая логика представляет собой некоторый род исчисления. Это своего рода алгебра, у которой имеются собственные правила, которые и точнее и шире правил обыкновенной логики[15]. Многое в силу ее алгебраичности может быть превращено в ряд обыкновенных вычислительных правил. Поэтому современные электронно-счетные машины получили возможность доказывать, например, теоремы.

— И трудные теоремы?

— Да, не легенькие…

— Все это очень странно! — сказал Илюша. — Неужели можно поверить, что машина может думать?

— Трудно ответить, конечно, на этот вопрос. Думать, как человек, машина, возможно, и не может, но решать задачи, над которыми человек размышляет иной раз очень долго и это ему нелегко дается — вот это она может. Конечно, не

— 167 —

всякие задачи, но некоторые удается. И совсем неплохо! Ты, кажется, ничего не имеешь против шахмат?

— Решительно ничего!

— Тогда позволь показать тебе одну позицию на шахматной доске, которая была предложена электронно-счетной машине. Смотри:


Белые

: Kpg1, Фd1, Ла1 и е2, Ch6, Kh5, а2, b2, сЗ, f2, g2, h2.

Черные: Kpg8, Фf5, Лd8 и h8, Kf7, a7, b7, b4, c7, c4, d3, h7. В этой позиции белые начинают и дают мат в три хода. Попробуй найди-ка решение! А когда найдешь, сам увидишь, что в легкой партии можно не только его не найти, а даже и прозевать эту победу. А потом скажи мне, надо думать, чтобы решить эту задачу, или нет? Машина решила эту задачу мигом.

— Так-то оно так, — задумчиво вымолвил мальчик, рассмотрев шахматную диаграмму, — а все-таки это очень похоже на трехходовую задачу, которой только нарочно придана видимость живой партии… То есть мне так кажется. Потому что черный король стоит в пату — никуда двинуться не может, — и белым надо только отвести черного ферзя с того места, где он защищает поле f6… Вот они это и делают в два хода. Но все-таки интересно! Если разобрать как следует, то этот пример не очень убедителен… А вот насчет доказательства трудных теорем — другое дело!

— Почитай специальные книжки, — ответил Радикс, — в двух словах это все рассказать нельзя, потому что эта логика довольно своеобразная и нелегкая наука. Могу привести еще один хороший пример. Как будто у твоего папеньки стоит на письменном столе электрическая лампа? Скажи, пожалуйста, как она зажигается?

— У лампы в цоколе, — отвечал мальчик, — есть такая кнопочка. Нажал — лампа зажглась, нажал еще раз — потухла.

— Так-с, — ответствовал Радикс, — давай попробуем все это выразить на языке нашей логики. Пусть зажженная лампа обозначается единицей, потухшая — нулем. А эту операцию нажатия кнопки мы будем тоже именовать единицей. Разумеется, ничего иного под этими символами теперь понимать нельзя.

Но если мы так условились, то будет справедливо равенство: (1 + 1 = 0), ибо если ты дважды нажал кнопку, то лампа гореть

— 168 —

не будет. И вообще всякая сумма четного числа единиц будет равна нулю, а нечетного — единице. Например, если ты нажал кнопку три раза подряд, то (1 + 1 + 1 = 1), то есть лампа будет гореть. Единица в левой части равенства — это нечто вроде отрицания «не»: нуль в правой части говорит, что ничего не изменилось. Если лампа не включена, то, прибавляя «не», получаем «не не включена», то есть включена, и наоборот.

— Вот как… — недоуменно пробормотал Илюша.

— И представь себе, что такого рода равенства ныне имеют немалое значение для замечательных современных электронно-счетных машин.

— 169 —

Схолия Десятая,

замечательная как своей непревзойденной краткостью, так и весьма скромными размерами сообщаемых ею фактов, на один из коих потребовалось всего-навсего: одна странная вещица, которую Илюша второпях принимает за бильярд, три шахматные доски, одно маковое зернышко, восемьдесят квадриллионов нулей и очень миленькая девушка, некая Альфа Ц. (известная тем, что когда бы на нее ни поглядели, всегда кажется, что она на пять лет моложе того, что есть на самом деле), после чего читатель узнает кое-что о славе Архимедовой, которой не были страшны долгие века, и об одной отважной путешественнице.

Радикс опустил свой длинный нос пониже и довольно лукаво посмотрел на Илюшу. Тому после испанской задачки ничего другого не оставалось, как сделать вид, что он этого не замечает.

— Нет, — сказал мальчик, — ты мне все-таки лучше про Бриарея…

— Про Бриарея рассказ будет не очень длинный. Бриарей был, по древнему греческому мифу, одним из детей Урана — неба и Геи — земли, от которых родились титаны, гекатонхойры (что значит сторукие) и одноглазые циклопы. С одним из этих последних встретился Одиссей, как ты, вероятно, знаешь (а не знаешь, так возьми «Одиссею» в переводе Жу-

— 170 —

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже