Читаем Волшебный двурог полностью

— Да, уж действительно! — промолвил Илюша. — Я раньше думал, что это ужасно большое число, знаешь, вот в этой задаче, где надо сосчитать, сколько зерен будет лежать на шахматной доске в шестьдесят четыре квадрата, если на первый квадрат положить одно зернышко пшеницы и на каждую следующую клетку класть в два раза больше. Но там совсем не так много получается.

— Да. Для обыкновенной шахматной доски получается число порядка десятков квинтильонов. Если взять стоклеточную доску, на которой играют в так называемые «польские шашки», то тогда число зерен доберется до нонильонов. А если взять доску еще побольше, у которой не десять полей с каждой стороны, а четырнадцать, и всего будет сто девяносто шесть полей, то вот тогда мы как-нибудь уж доползем до сотен септильонов децильонов.

— Как скоро все-таки растет! — воскликнул Илюша.

— Да, — отвечал Радикс, — растет недурно. Что же касается Архимеда, то он останавливается на числе, которое можно записать так:

108 · 1016

и которое представляет собой единицу с восьмьюдесятью квадриллионами нулей. Если это число написать на бумажной ленте, умещая по пятисот нулей на одном метре, то есть писать очень мелко и убористо, то на одном километре ленты мы напишем пятьсот тысяч нулей и на двух километрах один миллион. А так как нулей восемьдесят квадриллионов, или восемьдесят биллионов миллионов, то ленточка наша будет длиной в сто шестьдесят биллионов километров! Ленточка не маленькая: она в четыре с лишним раза длиннее орбиты, по которой несется планета Плутон. Свет, как ты знаешь, двигается довольно быстро. Однако все-таки, если бы на одном конце нашей ленточки мелькнула яркая звезда, на другом конце ее увидали бы не сразу, а только через шесть суток. Но ведь это еще только изображение архимедова числа, а не само число!

— Удивительно! — сказал Илюша.

— Работы Архимеда были удивительны не только для тебя, но и для людей недюжинных способностей и великих знаний. Древний историк Плутарх так говорил об Архимеде: «Во всей геометрии нет теорем более трудных и более глубоких, нежели теоремы Архимеда. Мне самому всегда казалось, когда

— 175 —

Единицы100Первые архимедовы числа.
Тысячи103
Миллионы106
108 — вторые архимедовы числа (мириады мириад).
Биллионы109
Триллионы1012
Квадрильоны1015
1016 — третьи архимедовы числа.
Квинтильоны1018*
Секстильоны1021
Септильоны10241024 — четвертые архимедовы числа.
Октильоны1027
Нонильоны1030**
1032 — пятые архимедовы числа.
Децильоны1033
Тысячи децильонов1036
Миллионы децильонов1039
1040 —шестые архимедовы числа.
Биллионы децильонов1042
Триллионы децильонов{10}1043
Квадрильоны децильонов10481048 — седьмые  архимедовы числа.
Квинтильоны децильонов1051
Секстильоны децильонов1054
1056 — восьмые архимедовы числа.
Септильоны децильонов1057
Октильоны децильонов1060***
Нонильоны децильонов1063
1064 —девятые архимедовы числа.
Децильоны децильонов1066



—--------------—

Первые архимедовы числа.

Единицы …… 10°

Тысячи …… 103

Миллионы ….. 106

—--------------—

108 — вторые архимедовы числа (мириады мириад).

—--------------—

Биллионы ….. 109

Триллионы ….. 1012

Квадриллионы …. 1015

—--------------—

1016 — третьи архимедовы числа.

—--------------—

Квинтильоны …. 1018 *

Секстильоны …. 1021

Септильоны …. 1024

—--------------—

1024 — четвертые архимедовы числа.

—--------------—

Октильоны …. 1027

Нонильоны …. 1030 **

Децильоны …. 1033

—--------------—

1032 — пятые архимедовы числа.

—--------------—

Тысячи децильонов ….. 1036

Миллионы децильонов …. 1039

Биллионы децильонов …. 1042

—--------------—

1040 — шестые архимедовы числа.

—--------------—

Триллионы децильонов . . . 1043

Квадрильоны децильонов . . 1048

Квинтильоны децильонов , . 1051

—--------------—

1048 — седьмые архимедовы числа.

—--------------—

Секстильоны децильонов . . 1054

Септильоны децильонов . . . 1057

Октильоны децильонов . . . 1060 ***

—--------------—

1056 — восьмые архимедовы числа.

—--------------—

Нонильоны децильонов . . . 1063

Децильоны децильонов . , . 1066

—--------------—

1064 — девятые архимедовы числа.

—--------------—


* Здесь стоит число, равное сумме зерен пшеницы на шахматной доске в шестьдесят четыре клетки. Примерно оно равно 1019 · 1,8447.

** Здесь стоит число, равное сумме зерен на шахматной доске в сто клеток. Примерно оно равно 1030 · 1,2677.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже