Помимо исключительной внутренней красоты этой формулы в ней есть еще один чрезвычайно важный элемент – стоящее в ее конце многоточие, которое означает «продолжать ту же процедуру до бесконечности». Трудно поверить, но это был первый случай, когда бесконечный процесс был явно обозначен в математической формуле.
Это напоминает мне одну историю о Людвиге Витгенштейне: он, как рассказывают, предлагал слушателям своих лекций вообразить человека, который бормотал на ходу: «…5, 1, 4, 1, запятая, 3 – всё!» Когда этого человека спросили, что это такое он делает, он ответил, что только что закончил перечисление десятичного представления числа π от конца к началу, чем занимался до этого целую вечность. Эта история кажется гораздо более абсурдной, чем рассказ о человеке, который решил сесть и записать десятичное представление π от начала до конца – и будет заниматься этим вечно. Почему?
Но вернемся к числу π. Интересно отметить, что многие другие помимо Архимеда и Виета пытались вычислить десятичное представление числа π, и все эти попытки в конце концов приводили к нескончаемым столбцам или нескончаемым операциям умножения. Однако в 1656 г. английский математик Джон Валлис открыл следующую формулу:
Если попарно перемножить последовательные сомножители, формулу можно записать в следующем виде:
Это бесконечное равенство действительно да- ет все следующие и следующие цифры десятичного представления π.
Интересно отметить, что именно Джон Валлис впервые использовал в 1655 г. символ бесконечности ∞ (по правде говоря, в своей работе о вычислении площадей под названием «О конических сечениях» (De sectionibus conicis) он использовал выражение 1/∞).
В 1671 г. шотландский математик и астроном Джеймс Грегори предложил еще одну формулу для вычисления π в виде бесконечной суммы:
Какая красивая формула! Простая, изящная и эффектная.
Этот рассказ был бы, однако, неполным, если бы я не упомянул, что сегодня честь открытия приведенной выше формулы приписывают индийскому математику XIV в. Мадхаве, который, по-видимому, знал ее задолго до Грегори. Некоторые исследователи утверждают, что Мадхава не только знал эту формулу, но и нашел способ вычисления отклонения ее результатов от истинного значения π и даже разработал еще одну формулу для вычисления π, дающую гораздо более прямое приближение к значению этого числа, чем формула Грегори. Вот она:
Честно говоря, тут я воспользовался случаем, чтобы показать вам некоторые особенно красивые формулы для вычисления значения π. Чтобы доказать, что π – вычислимое число, достаточно было бы показать всего лишь одну из них.
Что такое
Число Эйлера
Невычислимые вещественные числа
А существуют ли числа вещественные, но невычислимые? Они не просто существуют – их очень много. Собственно говоря, поскольку, как мы отметили раньше, количество алгоритмов счетно, мощность множества вычислимых чисел должна быть равна ℵ0
. А поскольку мощность множества вещественных чисел равна ℵ, это означает, что должно существовать ℵ вещественных чисел, которые не являются вычислимыми! Другими словами, невычислимы почти все вещественные числа. Для определения большинства вещественных чисел не существует алгоритмов. Можно ли говорить о невычислимых числах? Можете ли вы найти пример вещественного числа, которое было бы невычислимым?Некоторые математики утверждают, что во всем наборе вещественных чисел нет необходимости, и для всех практических целей вполне можно обойтись одними только вычислимыми числами.
Тем, кто хочет узнать больше (гораздо больше!) о вычислимых числах и их интереснейшей связи с концепциями Алана Тьюринга, я настойчиво рекомендую прочитать книгу «Новый ум короля. О компьютерах, мышлении и законах физики» (1989)[59]
, которую написал британский математик, философ и обладатель бесчисленных (можно ли сказать «бесконечных»?) наград и званий сэр Роджер Пенроуз.Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы