Если бы «молекулы воздуха» и могли заскучать в какой-нибудь банке, где ничего не происходит, то атмосфера Земли предоставляет им немало шансов развлечься из-за того, как температура изменяется с высотой над земной поверхностью. Температура на поверхности достаточно сильно различается в разных точках, но на границе тропосферы и стратосферы (в среднем около 12 км вверх, что, впрочем, означает от 9 км над полюсами до 17 км над экватором) она держится на уровне –60 ℃ или –70 ℃. Маршруты дальнемагистральных пассажирских самолетов проходят чуть ниже, и командир корабля обычно сообщает о температуре за бортом около –50 ℃. Граница тропосферы не задается в виде математически точно определенной поверхности, это до некоторой степени умозрительная конструкция типа Восточно-Сибирского моря, но мысленно отделять тропосферу от лежащей над ней стратосферы имеет смысл уже по той причине, что в стратосфере неожиданно делается теплее: от ее нижней границы на уровне 12 км до верхней границы (50–55 км) температура возрастает от –60 ℃ до «небольшого минуса», приближающегося снизу к 0 ℃. Это не значит, что там можно находиться (рис. 9.5); но это в точности отражает ситуацию с движением молекул, средние скорости которых в верхней части стратосферы оказываются такими же, как в мягкую зиму вблизи поверхности Земли. Источник разогрева – ультрафиолетовая составляющая солнечных лучей, которая поглощается молекулами; в результате основная доля ультрафиолета не достигает земной поверхности, а молекулы там наверху разгоняются. Еще выше, в мезосфере (до 80–85 км), температура снова падает до –90 ℃ или даже сильнее. Но это еще не конец слегка парадоксальной истории. В лежащей еще
выше термосфере (простирающейся, уже несколько условно, до высот 500–1000 км, в сильной зависимости от солнечной активности) температура поднимается до 1500 ℃ или даже 2000 ℃ – до полутора или двух тысяч, здесь нет опечатки в виде лишнего нуля; впрочем, температуры сильно (на сотни градусов) различаются днем и ночью, а также в период высокой и низкой солнечной активности. Термосфера – выразительный пример того, что температура выражает только среднюю энергию движения, но не сообщает больше ничего: молекулы (в основном уже атомы) в термосфере пролетают между столкновениями друг с другом целые километры, поэтому «согреться» там решительно не обо что. В пределах термосферы летает немало космических аппаратов, включая Международную космическую станцию (высота несколько более 400 км над земной поверхностью); трение об эти остатки атмосферы – второй по значимости фактор, после сплюснутости Земли у полюсов, влияющий на их орбиты (см. прогулку 4). Молекулы воздуха летают там и правда быстро: при 2000 ℃ атомарный кислород имеет среднюю скорость 1882 м/с, а атомарный водород – среднюю скорость, близкую к первой космической.*****
Равенство возможностей. Энергию, которая уходит внутрь вещей, традиционно называют теплотой или (с ускользающей от меня разницей в смыслах) теплом. Тепло – это энергия
, которую горячее тело передает холодному при их контакте, при этом происходит выравнивание их температур.Измерения температуры отражают только среднюю
энергию движения, и никто при этом не думает, что все молекулы в воздухе в углу вашей комнаты имеют одну и ту же энергию. Точно так же известная величина среднего дохода жителей города N не означает, что все они имеют в точности этот доход. Молекулы постоянно обмениваются количеством движения и энергией и поэтому решительно не в состоянии делить между собой энергию движения всегда поровну – вместо этого они как-то распределены по энергиям. Для только что упомянутых жителей их распределение по доходам определяется экономической и социальной политикой, но «кто регулирует», какая доля молекул имеет энергию в половину средней или в три раза больше средней? Имеются ли вообще какие-то элементы организации в молекулярном хаосе? На первый взгляд это довольно безнадежный вопрос, и перед погружением в него я предлагаю перерыв на кофе.Молекулы делают все, что не запрещено законами сохранения