Градусы раздробленного движения. Невозможность знания о происходящем с самими молекулами в индивидуальных деталях требует некоторого «массового» описания. В широком смысле оно называется статистическим, и это единственный доступный нам способ понимать огромную часть мира. У многих обитателей Земли эволюционно развилась способность непосредственно воспринимать среднюю энергию движения молекул вокруг себя. Каждый из нас
Рис. 9.4.
Одна и та же температура, представленная в градусах Фаренгейта и Цельсия, в кельвинах и в миллиэлектронвольтах, непосредственно выражающих среднюю энергию движения одной молекулы: 77 ℉ = 25 ℃ = 298,15 K = 38,539 мэВПри нуле градусов Цельсия средняя энергия движения одной молекулы равна числу, которое едва ли многое сообщает (5,657 зДж), однако более выразительные числа получаются, если вместо энергии движения поинтересоваться скоростью. Средние скорости, правда, зависят от массы молекулы: чтобы легкой и тяжелой молекулам «набрать» одну и ту же энергию движения, легкой приходится двигаться быстрее. При 0 ℃ молекулы азота в воздухе (те самые 78 % по объему) движутся со средней скоростью 493 м/с, а чуть более тяжелые молекулы кислорода (21 % объема воздуха, без которого для нас нет жизни) – со средней скоростью 461 м/с. Наконец, молекулярный водород, который почти в 16 раз легче кислорода (и который присутствует в атмосфере в «следовых», т. е. совершенно ничтожных, количествах), движется со средней скоростью 1904 м/с. Нагрев от 0 до 100 ℃ приводит к тому, что эти средние скорости увеличиваются до 576, 539 и 2148 м/с соответственно[169]
.Рис. 9.5.
Прыжок со специальным снаряжением с высоты около 38 км. Испытателю предстоит падение в более холодные слои атмосферы, чем тот, где находится аэростат; более теплые встретятся только ближе к поверхности