«Поверхность» здесь – это поверхность горизонта (хотя высказывание об «испарении с горизонта» не следует понимать буквально). В искривленном пространстве-времени вблизи черной дыры, на взгляд удаленного наблюдателя, рождаются и исчезают элементарные частицы, и открытие Хокинга состояло в том, что некоторые (очень немногие
, и в первую очередь даже не электроны, а фотоны) выбираются на волю – улетают туда, где черная дыра притягивает уже слабо. Они и составляют так называемое излучение Хокинга[188]. Если какой-то наблюдатель сможет зафиксировать это излучение и измерить, как его интенсивность зависит от длины волны, он придет к выводу, что источник – некоторое тело, которое находится при определенной температуре, и что это тело «только само светит», но не отражает ничего из того, что на него сваливается извне. Для этого он воспользуется законом излучения, который ждет нас буквально за поворотом на этой прогулке. Позаимствуем его содержание: закон говорит, что если тело не отражает «чужое» излучение, то интенсивность его собственного излучения на разных длинах волн имеет вполне конкретные значения в зависимости от температуры тела. Это, кстати, дает способ дистанционного определения температуры. Для обычных тел ее можно, конечно, определить и непосредственно, и получится то же самое, но для черных дыр нет другого способа, кроме «бесконтактного». Температура черной дыры массой в 5 масс Земли, изображенной в масштабе 1: 1 на рис. 7.15, если по-прежнему предполагать, что она не вращается (или вращается не слишком быстро), всего на 0,004 градуса выше абсолютного нуля (для черной дыры, имеющей массу Солнца, она составляет 0,000015 от этих четырех тысячных; чем массивнее черная дыра, тем ничтожнее температура, хотя и кажется, что ничтожнее уже некуда).Наблюдатель, воодушевленный дистанционным определением температуры черной дыры, может далее произвести с ней, пусть мысленно, действия, которые ближе всего к тем, которые (тоже мысленно) проводил с нагреваемым газом Карно: передать черной дыре энергию. Это, конечно, легче легкого, потому что E
= mc2: в черную дыру надо просто кидать массу. Приобретенная масса изменяет температуру черной дыры. Но, кидая маленькие порции массы и записывая все свои действия в журнал, наблюдатель внезапно решает учитывать каждую порцию с «уценкой» в соответствии с той температурой, которую в данный момент имеет черная дыра, – именно так, как это делается для энтропии. Здесь требуется уточнение, потому что масса – это не единственное, что получает черная дыра; падающие на нее предметы передают ей еще и некоторое количество вращения, поэтому наблюдатель должен аккуратно учитывать все, что он туда отправляет; это относительно несложно. Анализируя свои записи, наблюдатель обнаруживает, что «уцененные» порции энергии, отправленные в черную дыру, оказываются добавками к некоторой величине, связанной с самой черной дырой; неожиданно или нет, эта величина никогда не убывает. «Энтропия!» – восклицает наблюдатель. А потом обнаруживает нечто новое: во всех других известных ему ситуациях энтропия – достаточно абстрактное понятие, но для черной дыры она получает простое геометрическое воплощение. Энтропия черной дыры – это площадь поверхности ее горизонта; практически площадь поверхности, отличие состоит просто в умножении на число. (У Бекенстайна была только оценка для этого числа, а точно его нашел Хокинг; оно равно 1/4.) При этом горизонт – никакая не твердая поверхность, а нечто, определенное математически и лишенное опознавательных знаков. Но, если оставить в стороне тонкие квантовые эффекты, что бы ни происходило с черной дырой, площадь ее горизонта только возрастает[189].