На рубеже XX в. граница понятного мира проходила на 25 порядков выше – на масштабе, выражающем размер атома, и при невозможности «заглянуть внутрь» самая первая подсказка о неожиданном (квантовом!) укладе внутриатомной жизни также появилась не без помощи энтропии. «Энтропийные» соображения помогли угадать закон излучения – первый закон природы, отражающий квантовую природу мира. Чуть выше мы брали его взаймы, а сейчас наконец обсудим связанную с ним интригу по порядку. Закон носит имя своего первооткрывателя – Планка.
*****
Расфасовка света. Мы отступаем от эффектов сверхсильной гравитации и сопутствующих им ужасов в виде 77-значных чисел в несравненно
более близкий нам мир молекул и атомов, а заодно в год со знаменательным номером 1900, когда Планк установил первый квантовый закон природы – закон излучения. В максимально грубой формулировке этот закон говорит, каким цветом светится нагретое тело в зависимости от его температуры; а точнее, речь идет о том, как интенсивность излучения распределена по разным длинам волн. Если вам случалось настраивать монитор вашего компьютера, то вы могли обнаружить указание на температуру, скажем, 6000 K – что вообще-то близко к температуре на поверхности Солнца. Как-то раз, высказав подозрение, что внутри монитора таких температур все-таки нет, я получил от консультанта в магазине исчерпывающее пояснение: «Но ведь это абсолютно черное тело» (что это, собственно, такое, мы обсудим чуть позже). Планковский закон излучения «абсолютно черного тела» оказался точкой входа в квантовый мир. Это достижение состоялось благодаря счастливому сочетанию нескольких факторов: предшествовавших теоретических идей, прогресса в экспериментальной науке, настойчивости самого Планка, его удачливости в квалифицированном угадывании, а еще – энтропии.Сначала Планк собирался решить совсем другую задачу. Еще в 1894-м его заинтересовала возможность строго вывести закон возрастания энтропии, исходя из первопринципов. Возрастание энтропии – синоним необратимости, и в поисках источника необратимости Планк взялся исследовать процессы излучения и поглощения света (электромагнитных волн) веществом. Главное про электромагнитные волны сами по себе было известно к тому времени из вторых-бессмертных-после-законов-Ньютона уравнений, записанных Максвеллом. Они говорят, в частности, что излучение случается тогда, когда электрический заряд меняет
характер своего движения – испытывает ускорение. Хотя тела вокруг нас электрически нейтральны, там внутри имеются положительные и отрицательные заряды; сейчас про них известно много подробностей, но и без этих подробностей можно было сделать вывод и о существовании зарядов, и о чем-то вроде их колебательного движения, исходя из одного только факта теплового излучения: все тела излучают электромагнитные волны просто оттого, что имеют некоторую температуру (рис. 9.12). На этом среди прочего основано «инфракрасное видение» во всех его разнообразных вариантах, от приборов ночного видения до существенного компонента систем дистанционного зондирования Земли.
Рис. 9.12.
Тепловое излучение