Превратив с помощью буквы h
выражение для энтропии в выражение для числа реализаций, Планк углядел в нем неожиданное и ранее не встречавшееся – черты комбинаторной задачи. Комбинаторные задачи имеют дело с числом способов создать какие-то конфигурации – например, разложить заданное число предметов по некоторому числу ящиков. Если сами предметы различать между собой не нужно, то, скажем, два предмета можно распределить по двум ящикам тремя способами два предмета по трем ящикам – уже шестью; три по пяти – тридцатью пятью; еще один пример приведен на рис. 9.13. Обсуждаемое число способов сравнительно невелико при малом или даже умеренном числе предметов или ящиков, но оказывается необычайно большим, когда много и предметов для раскладывания, и ящиков.
Рис. 9.13.
Четыре неразличимых предмета можно разложить по трем ящикам пятнадцатью различными способами
Вместо «предметов» перед глазами Планка оказались порции энергии величиной h
· (частота), а вместо ящиков – колебательные системы (колеблющиеся заряды), служащие источниками излучения в веществе. За довольно впечатляющий срок (около двух месяцев напряженной работы) Планк извлек из своей волюнтаристской формулы указание, что колебательные системы могут обладать не любой энергией, а только сложенной из некоторого числа порций. Полную энергию, другими словами, следовало разбить на порции указанного размера и далее обращаться с порциями как с предметами: раздавать их по колебательным системам так, как будто предметы распределяются по ящикам. Полное число реализаций одной и той же картины (излучение на заданной частоте, обусловленное температурой вещества) оказалось в точности равным числу способов распихать порции энергии по колебательным системам, как по ящикам. Число реализаций отправляется далее в формулу Больцмана для энтропии, а из знания энтропии выводится условие равновесия, что и дает закон излучения, превосходно описывающий реальный мир.Безоговорочный успех – полное и точное согласие с опытом – закона излучения, опирающегося на формулу Планка для энтропии, придавал легитимность постулатам, на основе которых он этот закон получил. Собственно говоря, к известным первопринципам надо было добавить только неизвестно откуда взявшийся учет энергии порциями специального размера h
· (частота). Правда, предлагаемое предписание по обращению с энергией было не похоже ни на что известное, коль скоро энергия, согласно опыту, представляет собой величину непрерывную; и порции почему-то следовало брать разного размера для колебательных систем с разными частотами – но тогда все и сходилось! Планк чрезвычайно прозорливо усмотрел в своей формуле скрытую комбинаторную задачу, но считал всю «порционную» идею лишь техническим приемом, а не разрывом с известным знанием – чем она была на самом деле.Ниоткуда не следовавший постулат о порциях оказался самым фундаментальным законом, открытым Планком. Среди прочего он привел к радикальным изменениям представлений о движении.
*****
Квант действия. Постоянная Планка h
оказалась входным билетом в описание мира, где многое – и в первую очередь, пожалуй, движение – устроено не так, как мы привыкли. Она – одна из Мировых постоянных нашей Вселенной (в том же клубе – скорость света c и постоянная гравитационного взаимодействия G), и ее появление в любом выражении – неоспоримое указание на его «квантовую природу». Мы достаточно подробно обсудим, что это значит, на следующих прогулках, а пока можно думать, что «квантовый» означает устройство вещей, в ряде случаев предполагающее наличие некоторых «порций» или «ячеек» – во всяком случае, слово «квант» было первоначально выбрано для указания на некоторое отмеренное количество чего-либо[193]. Самому Планку его постоянная требовалась для введения дискретных «делений» на шкале энергии. Насколько такая дискретность соответствовала природе вещей, а не была вычислительным приемом, выяснилось не сразу; на современников закон Планка слишком большого впечатления поначалу не произвел. В 1905 г. Эйнштейн предложил объяснение происходящего в совсем другой ситуации, постулировав, что свет поглощается только порциями энергии и каждая такая порция буквально равна выражению h · (частота); это относилось уже не к упаковке каких-то значений энергии в «ячейки», как вроде бы было у Планка, а к свойствам света: при заданной частоте не бывает порций света меньшего размера. Впоследствии (1921) эта идея Эйнштейна была удостоена Нобелевской премии, но в 1900-х гг. события развивались еще неспешно. Для самого Планка осознание истинного смысла достигнутого – принципиального разрыва между описаниями мира без буквы h и с ней – заняло без малого десять лет (понадобилось влияние Лоренца, Эренфеста и других, а также вклад Эйнштейна).