Начало этой цепочки событий пришлось на 1908–1911 гг., когда – всего через несколько лет после смерти Больцмана – для прощупывания внутренности атомов удалось использовать движение
. Идея была близка к следующему, довольно затратному способу знакомства с окрестным ландшафтом. Если перед вами находится начисто затянутая туманом узкая полоса зеленых насаждений (деревьев или кустов), то способ разобраться, что там скрыто от глаз, – усердно бросать в туман камни и фиксировать, пролетают ли они насквозь. Из моего пристрастия к рогаткам можно, наверное, сделать вывод, что в детстве я не настрелялся вволю, но здесь и правда подойдет хорошая рогатка, используемая с некоторым «стандартным» натяжением. Через кустарник камни будут пролетать насквозь, испытывая лишь небольшое влияние встреченного ими по дороге, но в случае отдельно стоящих деревьев вроде сосен картина будет иной: камни или пролетят через исследуемую область без какого-либо сопротивления, или, в достаточно редких случаях, вообще не пролетят насквозь, из чего вы сможете со временем сделать вывод о густоте, с которой посажены деревья, и даже о средней толщине стволов. Революционное предложение состояло в том, чтобы похожим образом простреливать слой вещества. Подходящими «камнями» оказались альфа-частицы (ядра атомов гелия, по другому поводу уже встречавшиеся нам в главе «прогулка 5» и далее; они электрически заряжены и поэтому поддаются ускорению электрическим полем, хотя в первых экспериментах достаточно было скоростей, с которыми они вылетали из радиоактивного источника). Альфа-частицы направили на фольгу из золота толщиной всего в несколько сотен атомов, а затем фиксировали, как они разлетаются; все работало даже лучше, чем с рогаткой, потому что альфа-частицы никогда не оставались где-то внутри, а всегда вылетали, отклоняясь из-за взаимодействия с веществом. Эти отклонения оказались очень информативными. За выяснение того, что происходит, взялся Резерфорд.Исходно ожидался вариант, относящийся скорее к типу «кустарник». Было понятно, что где-то в недрах вещества имеются электроны, которые несут отрицательный электрический заряд; существование электрона в качестве заряженной частицы – «корпускулы» – установил в 1897 г. Дж. Дж. Томсон[200]
. А раз вещество в целом электрически нейтрально, там же должны находиться и положительные заряды. Про них совсем ничего известно не было, и Томсон не стал делать предположений о корпускулах, которые не наблюдались, а высказал идею, что известные ему электроны погружены в атоме в какое-то облако, несущее положительный заряд. Это звучало приемлемо с учетом имевшегося знания, но к 1911 г. выяснилось, что природа устроена совсем не так.Оказалось, что альфа-частицы, сами несущие положительный заряд, проходят насквозь, практически не встречая положительного заряда нигде, за исключением областей крайне малого объема, диаметром в несколько тысяч раз меньше, чем предполагаемый размер атома. Зато при попадании в эту малость альфа-частица отклонялась радикально, вплоть до отскока практически назад. Этого никак не могло случаться, если бы положительный заряд был распределен по всему атому. Сам Резерфорд еще не употреблял слова «ядро», но именно он и обнаружил таким образом атомное ядро: весь положительный заряд в атоме оказался сконцентрирован в очень малом объеме. Для оценки можно считать диаметр атома равным 10–8
см, а размер ядра – 10–12 см. Разделяющие их четыре порядка означают различие в объеме в триллион раз. Там же, в крохотном ядре, как вскоре удалось выяснить, сидит и практически вся масса атома. Масштаб, которым оперировало человечество, в одночасье распространился на четыре порядка вглубь. Это было достигнуто только и единственно с использованием движения, и с тех пор исследование мира на все более мелких масштабах идет безостановочно в том темпе, в каком удается обеспечивать движение, необходимое для исследования (для чего и строятся ускорители элементарных частиц).