Со знаком плюс надо просто примириться как со способом соединения высказываний. Возможность такого соединения – одно из главных свойств квантовой механики, и стоящая за ним идея – немного забегая вперед – довольно многообещающая: если высказывание |q
1⟩ выражает идею присутствия электрона в точке q1, а высказывание |q2⟩ – идею его присутствия в точке q2, то высказывание |q1⟩ + |q2⟩ выражает идею пребывания электрона не в одной-единственной точке[239]. Это высказывание про электрон, у которого нет однозначно определенного положения. При этом сами q1 и q2 – чем бы они ни были, указаниями «пролетел сверху/снизу» или числами, – никогда не складываются. Здесь есть психологическая сложность, которую стоит осознать, чтобы избежать путаницы. Если, например, речь идет о двух координатах, то коль скоро координаты – это какие-то числа, их можно, конечно, сложить друг с другом. Но в этом нет никакого смысла, если мы интересуемся тем, где что-нибудь расположено: например, если вы знаете, что нечто можно наблюдать или в точке с координатой x1 = 2 см, или в точке с координатой x2 = 5 см, то говорить о точке с координатой x1 + x2 = 7 см довольно бессмысленно, эти 7 см не определяют положение чего бы то ни было. При сложении же «высказываний» |x1⟩ + |x2⟩ никакие 7 см не появляются, числа внутри значков | ⟩ защищены этими значками и сами по себе в арифметические действия не вступают.Не следует складывать числа
Мы на пути к главным чудесам квантовой механики! Вот что можно заметить уже сейчас: «высказываний» оказывается намного больше, чем «вещей», с которых мы начали. Про огромное число «высказываний» – таких как |q
1⟩ + |q2⟩ + |q3⟩ – нелегко сказать, какой одной «вещи» высказывание соответствует. Тем не менее в «пространстве высказываний» имеется полная демократия: все они существуют там на равных правах вне зависимости от того, нашли или не нашли мы одну «вещь», отвечающую данному высказыванию. Это не лишено странности, но, как мы совсем скоро увидим, в этом и состоит способ преодоления вражды при описании мира. Сначала, однако, надо закончить с действиями над высказываниями. Сложение – это только одно из двух действий.2. Любое «высказывание» |r
⟩ можно умножить на любое число a. Получится снова некоторое «высказывание» a · |r⟩.
«Высказывание» a
· |r⟩ не имеет никакого отношения к попытке умножить на a саму величину r (координату, компоненту количества движения, энергию или еще что-то в этом роде); в рамках нашей не квантово-механической, но красочной иллюстрации 5 · |желтый⟩ не означает «в пять раз более желтый». Но возможность еще и умножения наряду со сложением показывает, подвох какого выдающегося масштаба здесь намечается. Сумма 5 · |желтый⟩ + |синий⟩ выражает существенно больший шанс встретить желтый, чем синий, а если, отбросив аналогии, мы всерьез говорим об электроне и q1, q2, q3 – точки, то высказывание 10 · |q1⟩ + |q2⟩ + 0,1 · |q3⟩ выражает идею предпочтительного присутствия электрона в точке q1 и подавленного присутствия в точке q3; при этом я не отказываюсь от своих слов, что он не находится ни в одной конкретной точке[240].Я слышу все более настойчивый вопрос: но что же такое
эти | ⟩ «высказывания»? Я не пытаюсь его игнорировать, просто отвечать особенно нечего. Можно еще раз вспомнить про метафору вещей и слов. Слова – это то, что разрешается соединять друг с другом, следуя правилам грамматики, таким образом, чтобы результат можно было каким-то образом интерпретировать. Про наши «высказывания» можно сказать нечто похожее: это то, что можно умножать на числа и соединять друг с другом с помощью знака «+», а интерпретацией того, что получается, мы и будем в основном заняты на этой прогулке. В качестве грамматики же имеется одно ключевое правило. Оно выражается формулой, которую я не просто собираюсь привести, но намерен сделать это с целью не потерять половину своих спутников на этой прогулке, вопреки расхожей мудрости, что их количество уменьшается вдвое от каждой формулы.Главное правило – раскрытие скобок
Формула, правда, широко известна. Умножая сумму на число, как в a
· (B + C), можно сначала умножить каждое слагаемое, а потом сложить: a · B + a · C. Это одно и то же: a · (B + C) = a · B + a · C – вот и вся формула. Если кто-то вспомнил про материал примерно пятого класса под названием «раскрытие скобок», то это оно и есть (чуть более торжественно – распределительный закон). «Грамматика», регулирующая правила обращения с «высказываниями», именно такова: всегда должно соблюдаться правило раскрытия скобок a · (|r⟩ + |s⟩) = a · |r⟩ + a · |s⟩. Примитивная, ничего не скажешь, грамматика[241]. Тот факт, что она лежит в основе самого точного на сегодняшний день описания природы, кажется мне по-настоящему удивительным.*****