Как же о них думать. И все же. Абстрактные конструкции, какими являются эти «высказывания», бывает полезно хоть как-то себе представлять
. Есть два типа более осязаемых явлений, на которые они похожи по своим определяющим признакам – каковые только в том и заключаются, что к любым выбранным явлениям можно применить умножение на числа и сложение, в результате чего получаются другие явления того же типа.Первый тип похожих явлений – волны. Их тоже можно складывать и умножать на числа таким способом, что в результате снова получаются волны. Умножение волны на 2,5 означает, что амплитуда колебаний в каждой точке в 2,5 раза больше – можно сказать, волна «выше» (и одновременно «глубже»). Это показано на рис. 11.1 слева. Идеальный усилитель сигнала, кстати, должен выполнять в точности умножение, не внося в волну больше никаких изменений (например, не сглаживая вершину усиленной – «умноженной» – волны). Умножение на что-нибудь вроде 0,1 дает волну в десять раз «ниже». Несложно разобраться и с умножением волн на отрицательные числа. Умножить на –1 означает инвертировать волну, т. е. перевернуть, как показано на рис. 11.1 справа. Умножение на –42 состоит в том, что волну надо инвертировать и
умножить на 42. А после умножения волны на 0 получится волна с нулевой амплитудой колебаний во всех точках, т. е. в обычных терминах – отсутствие волны; удобно тем не менее считать отсутствие волны нулевой волной. Умножение (число) · (волна) отличается от умножения числа на число, потому что включает в себя два объекта разной природы: волны все-таки не числа. И волны в этом умножении «главнее», потому что в результате умножения получается именно волна: (число) · (волна) = (другая волна). В точности это мы видели и для «высказываний».
Рис. 11.1.
Умножение волны на число дает другую волну. Слева: более светлый профиль – результат умножения более темного на 2,5. Справа: умножение на –1 инвертирует волну
Сложение волн – это просто наложение одной волны на другую. Наглядная иллюстрация – сложение волн на воде: игрушечный кораблик опускается и поднимается в зависимости от того, как именно суммируются колебания в данной точке[242]
. В качестве другой иллюстрации: мы практически непрерывно ощущаем сложение волн ушами, потому что вокруг нас, как правило, много источников разнообразных звуковых волн (и еще больше электромагнитных). Кстати, если какую-то волну сначала умножить на –1, а потом сложить с исходной, то получится нулевая волна. Этот принцип используется в системах активного шумоподавления: шум инвертируют, т. е. умножают на –1, а затем складывают с волной, несущей смесь сигнала и шума; шум в результате сокращается по правилу A + (–1) · A = 0, но A здесь – не число, а волна.Встречаем волновую функцию!
Из-за того, что таковы же правила обращения с нашими «высказываниями» |*
⟩ (где вместо звездочки записано что-нибудь в зависимости от ситуации – значение координаты, количества движения, энергии, компоненты спина, …), эти |*⟩ называют еще волновыми функциями или, обобщенно, волновой функцией. Само по себе слово «функция» нам уже встречалось. Оно означает машину по превращению входных данных (например, координат точки, а может быть, цвета заката) в выходные – в некоторые числа. (Пример функции: на входе угол, на выходе его синус; на входе человек, на выходе дата его рождения.) Каждое наше «высказывание» кодирует в себе информацию о такой машине. Если временно снова прибегнуть к помощи цветовой палитры, то «высказывание» 5 · |красный⟩ + 3 · |желтый⟩ – 1 · |фиолетовый⟩ кодирует функцию, которая превращает «красный» в число 5, «желтый» в число 3 и «фиолетовый» в число –1 (числа могут быть совершенно любыми). Можно сказать, что запись в виде суммы «сразу» показывает все варианты входных данных, которые данная функция умеет обрабатывать, причем каждый вариант – вместе с тем значением, которое функция из него производит (сразу ведь видно, что фиолетовый отвечает минус единице)[243]. А что насчет оранжевого, экрю и маренго? Они не упомянуты в сумме из трех слагаемых, поэтому их наша машина-функция превращает в нуль. Тот же пример, но лишенный красок, выглядит так: если перед вами сумма a1 · |q1⟩ + a2 · |q2⟩ + a3 · |q3⟩ +…, где внутри кетов сидят какие-то точки, то отвечающая ей машина-функция задается простым правилом. Какое значение имеет эта функция в точке q1? – значение a1; в точке q2? – значение a2 и т. д.[244] Волновые функции можно, конечно, обозначать любыми буквами, но чаще всего используется ψ или Ψ (пси). Запись ψ(q), где под q понимаются какие-либо величины, показывает, входные данные какого типа она умеет обрабатывать (выражаясь чуть формальнее: от каких переменных она зависит). Волновую функцию иногда называют также пси-функцией.